OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 1 trang 102 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 1 trang 102 SGK Toán 10 Chân trời sáng tạo tập 1

Cho 3 vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) đều khác vectơ \(\overrightarrow 0 \). Các khẳng định sau đúng hay sai?

a) Nếu hai vectơ \(\overrightarrow a ,\overrightarrow b \) cùng phương với \(\overrightarrow c \) thì \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương

b) Nếu hai vectơ \(\overrightarrow a ,\overrightarrow b \) cùng ngược hướng với \(\overrightarrow c \) thì \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 1

Phương pháp giải

Nhận xét về giá và hướng của hai vectơ \(\overrightarrow a ,\overrightarrow b \) với vectơ \(\overrightarrow c \) để rút ra kết luận.

Lời giải chi tiết

a)      

+) Vectơ \(\overrightarrow a \) cùng phương với vectơ \(\overrightarrow c \) nên giá của vectơ \(\overrightarrow a \) song song với giá của vectơ \(\overrightarrow c \)

+) Vectơ \(\overrightarrow b \) cùng phương với vectơ \(\overrightarrow c \) nên giá của vectơ \(\overrightarrow b \) song song với giá của vectơ \(\overrightarrow c \)

Suy ra giá của vectơ \(\overrightarrow a \) và vectơ \(\overrightarrow b \) song song với nhau nên \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương

Vậy khẳng định trên đúng

b) Giả sử vectơ \(\overrightarrow c \) có hướng từ sang B

+) Vectơ \(\overrightarrow a \) ngược hướng với vectơ \(\overrightarrow c \) nên giá của vectơ \(\overrightarrow a \) song song với giá của vectơ \(\overrightarrow c \) và có hướng từ sang A

+) Vectơ \(\overrightarrow b \) ngược hướng với vectơ \(\overrightarrow c \) nên giá của vectơ \(\overrightarrow b \) song song với giá của vectơ \(\overrightarrow c \) và có hướng từ sang A

Suy ra, hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng

Vậy khẳng định trên đúng

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 1 trang 102 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Giải bài 2 trang 102 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 3 trang 102 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 4 trang 102 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 5 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 7 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 8 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 9 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 10 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 11 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 12 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 1 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 2 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 3 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 4 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 5 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 7 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 8 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 9 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 10 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 1 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 2 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 3 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 4 trang 103 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 5 trang 103 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 103 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

NONE
OFF