OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 6 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1

Cho \(\left| {\overrightarrow a  + \overrightarrow b } \right| = 0\). So sánh độ dài, phương và hướng của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \).

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài 6

Phương pháp giải

Cho hai vectơ \(\overrightarrow a\) và \(\overrightarrow b\). Từ một điểm A tùy ý, lấy hai điểm B, C sao cho  \(\overrightarrow {AB}  = \overrightarrow a \), \(\overrightarrow {BC}  = \overrightarrow b \). Khi đó \(\overrightarrow {AC} \) được gọi là tổng của hai vecto \(\overrightarrow a\), \(\overrightarrow b\) được kí hiệu là \(\overrightarrow a  + \overrightarrow b \). 

Vậy \(\overrightarrow a  + \overrightarrow b  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Lời giải chi tiết

\(\left| {\overrightarrow a  + \overrightarrow b } \right| = 0 \Leftrightarrow \overrightarrow a  + \overrightarrow b  = \overrightarrow 0  \Leftrightarrow \overrightarrow a  =  - \overrightarrow b \)

\(\overrightarrow a  =  - \overrightarrow b \) suy ra hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) là hai vecto đối nhau nên chúng cùng phương, ngược hướng và có độ dài bằng nhau.

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 6 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Giải bài 4 trang 102 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 5 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 7 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 8 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 9 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 10 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 11 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 12 trang 103 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 1 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 2 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 3 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 4 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 5 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 7 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 8 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 9 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 10 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 1 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 2 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 3 trang 102 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 4 trang 103 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 5 trang 103 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 103 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

NONE
OFF