Hướng dẫn Giải bài tập Toán 10 Chân trời sáng tạo Chương 9 Bài 1 Tọa độ của vectơ giúp các em học sinh nắm vững phương pháp giải bài tập và ôn luyện tốt kiến thức.
-
Hoạt động khởi động trang 38 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hãy tìm cách xác định vị trí của các quân mã trên bàn cờ vua.
-
Hoạt động khám phá 1 trang 38 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Nêu nhận xét về độ lớn, phương và chiều của vectơ trên trục \(Ox\) và vectơ \(\overrightarrow j \) trên trục \(Oy\) (hình 1)
-
Hoạt động khám phá 2 trang 38 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Trong mặt phẳng Oxy, cho một vectơ \(\overrightarrow a \)tùy ý. Vẽ \(\overrightarrow {OA} = \overrightarrow a \)và gọi \({A_1},{A_2}\)lần lượt là hình chiếu vuông góc của A lên Ox và Oy (hình 4). Đặt \({\overrightarrow {OA} _1} = x\overrightarrow i \), \({\overrightarrow {OA} _2} = y\overrightarrow j \). Biểu diễn vectơ \(\overrightarrow a \)theo hai vectơ và \(\overrightarrow j \)
-
Hoạt động khám phá 3 trang 39 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Trong mặt phẳng Oxy, cho điểm M. Xác định tọa độ của vectơ \(\overrightarrow {OM} \)
- VIDEOYOMEDIA
-
Thực hành 1 trang 40 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Trong mặt phẳng Oxy, cho ba điểm \(D\left( { - 1;4} \right),E\left( {0; - 3} \right),F\left( {5;0} \right)\)
a) Vẽ các điểm D, E, F trên mặt phẳng Oxy
b) Tìm tọa độ của các vectơ \(\overrightarrow {OD} ,\overrightarrow {OE} ,\overrightarrow {OF} \).
c) Vẽ và tìm tọa độ hai vectơ đơn vị và \(\overrightarrow j \)lần lượt trên hai trục tọa độ Ox và Oy
-
Vận dụng 1 trang 40 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Một máy bay đang cất cánh với vận tốc 240 km/h theo phương hợp với phương nằm ngang một góc \(30^\circ \) (hình 7)
a) Tính độ dài mỗi cạnh của hình chữ nhật ABCD
b) Biểu diễn vận tốc \(\overrightarrow v \) theo hai vectơ và \(\overrightarrow j \)
c) Tìm tọa độ của \(\overrightarrow v \)
-
Hoạt động khám phá 4 trang 40 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Trong mặt phẳng Oxy, cho hai vectơ \(\overrightarrow a = \left( {{a_1},{a_2}} \right),\overrightarrow b = \left( {{b_1},{b_2}} \right)\) và số thực k. Ta đã biết có thể biểu diễn từng vectơ \(\overrightarrow a ,\overrightarrow b \) theo hai vectơ , \(\overrightarrow j \) như sau
a) Biểu diễn từng vectơ \(\overrightarrow a + \overrightarrow b ,\overrightarrow a - \overrightarrow b ,k\overrightarrow a \) theo hai vectơ , \(\overrightarrow j \)
b) Tìm \(\overrightarrow a .\overrightarrow b \) theo tọa độ của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \)
-
Thực hành 2 trang 41 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho hai vectơ \(\overrightarrow m = \left( { - 6;1} \right),\overrightarrow n = \left( {0;2} \right)\)
a) Tìm tọa độ các vectơ \(\overrightarrow m + \overrightarrow n ,\overrightarrow m - \overrightarrow n ,10\overrightarrow m , - 4\overrightarrow n \)
b) Tính các tích vô hướng \(\overrightarrow m .\overrightarrow n ,\left( {10\overrightarrow m } \right).\left( { - 4\overrightarrow n } \right)\)
-
Vận dụng 2 trang 41 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Một thiết bị thăm dò đáy biển đang lặn với vận tốc \(\overrightarrow v = \left( {10; - 8} \right)\) (hình 8). Cho biết vận tốc của dòng hải lưu vùng biển là \(\overrightarrow w = \left( {3,5;0} \right)\). Tìm tọa dộ của vectơ tổng hai vận tốc \(\overrightarrow v \) và \(\overrightarrow w \)
-
Hoạt động khám phá 5 trang 41 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho hai điểm \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\). Từ biểu thức \(\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \), tìm tọa độ vectơ \(\overrightarrow {AB} \) theo tọa độ hai điểm A,B
-
Thực hành 3 trang 42 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho \(E\left( {9;9} \right),F\left( {8; - 7} \right),G\left( {0; - 6} \right)\). Tìm tọa độ các vectơ \(\overrightarrow {FE} ,\overrightarrow {FG} ,\overrightarrow {EG} \)
-
Hoạt động khám phá 6 trang 42 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Trong mặt phẳng Oxy, cho tam giác ABC có tọa độ ba đỉnh là \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right),C\left( {{x_C};{y_C}} \right)\). Gọi \(M\left( {{x_M};{y_M}} \right)\) là trung điểm của đoạn thẳng AB, \(G\left( {{x_G};{y_G}} \right)\) là trọng tâm của tam giác ABC
a) Biểu thị vectơ \(\overrightarrow {OM} \) theo hai vectơ \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \)
b) Biểu thị vectơ \(\overrightarrow {OG} \) theo ba vectơ \(\overrightarrow {OA} \), \(\overrightarrow {OB} \) và \(\overrightarrow {OC} \)
c) Từ các kết quả trên, tìm tọa độ điểm M, G theo tọa độ của các điểm A, B, C
-
Thực hành 4 trang 43 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho tam giác QRS có tọa độ các đỉnh \(Q\left( {7; - 2} \right),R( - 4;9)\) và \(S(5;8)\)
a) Tìm tọa độ trung điểm M của cạnh QS
b) Tìm tọa độ trọng tâm G của tam giác QRS
-
Hoạt động khám phá 7 trang 43 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho hai vectơ \(\overrightarrow a = ({a_1};{a_2}),\overrightarrow b = ({b_1};{b_2})\) và hai điểm \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\). Hoàn thành các phép biến đổi sau:
a) \(\overrightarrow a \bot \overrightarrow b \Leftrightarrow \overrightarrow a .\overrightarrow b = \overrightarrow 0 \Leftrightarrow {a_1}{b_1} + {a_2}{b_2} = ...?\)
b) \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương \( \Leftrightarrow \left\{ \begin{array}{l}{a_1} = t{b_1}\\{a_2} = t{b_2}\end{array} \right.\) hay \(\left\{ \begin{array}{l}{b_1} = k{a_1}\\{b_2} = k{a_2}\end{array} \right. \Leftrightarrow {a_1}{b_2} - {a_2}{b_1} = ...?\)
c) \(\left| {\overrightarrow a } \right| = \sqrt {{{\left( {\overrightarrow a } \right)}^2}} = \sqrt {.?.} \)
d) \(\overrightarrow {AB} = ({x_B} - {x_A};{y_B} - {y_A}) \Rightarrow AB = \sqrt {{{\left( {\overrightarrow {AB} } \right)}^2}} = \sqrt {.?.} \)
e) \(\cos (\overrightarrow a ,\overrightarrow b ) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{.?.}}{{\sqrt {{a_1}^2 + {a_2}^2} .\sqrt {{b_1}^2 + {b_2}^2} }}\) (\(\overrightarrow a ,\overrightarrow b \) khác \(\overrightarrow 0 \))
-
Thực hành 5 trang 44 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Trong mặt phẳng Oxy, cho tam giác DEF có tọa độ các đỉnh \(D(2;2),E(6;2)\) và \(F(2;6)\)
a) Tìm tọa độ điểm H là chân đường vuông cao của tam giác DEF kẻ từ D
b) Giải tam giác DEF
-
Vận dụng 3 trang 44 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Một trò chơi trên máy tính đang mô phỏng một vùng biển có hai hòn đảo nhỏ có tọa độ \(B\left( {50;30} \right)\) và \(C\left( {32; - 23} \right)\). Một con tàu đang neo đậu tại điểm \(A\left( { - 10;20} \right)\)
a) Tính số đo của \(\widehat {BAC}\)
b) Cho biết một đơn vị trên hệ trục tọa độ tương ứng với 1km. Tính khoảng cách từ con tàu đến mỗi hòn đảo
-
Giải bài 1 trang 44 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Trên trục \(\left( {O;\overrightarrow e } \right)\) cho các điểm A ,B, C, D có tọa độ lần lượt là 4; -1; -5; 0
a) Vẽ trục và biểu diễn các điểm đã cho lên trên trục đó
b) Hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) cùng hướng hay ngược hướng?
-
Giải bài 2 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Chứng minh rằng
a) \(\overrightarrow a = \left( {4; - 6} \right)\) và \(\overrightarrow b = \left( { - 2;3} \right)\) là hai vectơ ngược hướng
b) \(\overrightarrow a = \left( { - 2;3} \right)\) và \(\overrightarrow b = \left( { - 8;12} \right)\) là hai vectơ cùng hướng
c) \(\overrightarrow a = \left( {0;4} \right)\) và \(\overrightarrow b = \left( {0; - 4} \right)\) là hai vectơ đối nhau
-
Giải bài 3 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Tìm tọa độ của các vectơ sau:
a) \(\overrightarrow a = 2\overrightarrow i + 7\overrightarrow j ;\)
b) \(\overrightarrow b = - \overrightarrow i + 3\overrightarrow j ;\)
c) \(\overrightarrow c = 4\overrightarrow i ;\)
d) \(\overrightarrow d = - 9\overrightarrow j \)
-
Giải bài 4 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho bốn điểm \(A(3;5),B(4;0),C(0; - 3),D(2;2)\). Trong các điểm đã cho, hãy tìm điểm:
a) Thuộc trục hoành
b) Thuộc trục tung
c) Thuộc đường phân giác của góc phần tư thứ nhất
-
Giải bài 5 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho điểm \(M\left( {{x_0};{y_0}} \right)\). Tìm tọa độ
a) Điểm H là hình chiếu vuông góc của M trên trục Ox
b) Điểm M’ đối xứng với M qua trục Ox
c) Điểm K là hình chiếu vuông góc của M trên trục Oy
d) Điểm M’’ đối xứng với M qua trục Oy
e) Điểm C đối xứng với M qua gốc tọa độ
-
Giải bài 6 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho ba điểm \(A(2;2),B(3;5),C(5;5)\)
a) Tìm tọa độ điểm D sao cho ABCD là một hình bình hành
b) Tìm tọa độ giao điểm hai đường chéo của hình bình hành ABCD
c) Giải tam giác ABC
-
Giải bài 7 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho tam giác ABC có các điểm \(M\left( {2;2} \right),N\left( {3;4} \right),P\left( {5;3} \right)\) lần lượt là trung điểm của các cạnh AB, BC và CA
a) Tìm tọa độ các đỉnh của tam giác
b) Chứng minh rằng trọng tâm của các tam giác ABC và MNP trùng nhau
c) Giải tam giác ABC
-
Giải bài 8 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho hai điểm \(A\left( {1;3} \right),B\left( {4;2} \right)\)
a) Tìm tọa độ điểm D nằm trên trục Ox sao cho DA=DB
b) Tính chu vi tam giác OAB
c) Chứng minh rằng OA vuông góc AB và từ đó tính diện tích tam giác OAB
-
Giải bài 9 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Tính góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \)trong các trường hợp sau:
a) \(\overrightarrow a = (2; - 3),\overrightarrow b = (6;4)\)
b) \(\overrightarrow a = (3;2),\overrightarrow b = (5; - 1)\)
c) \(\overrightarrow a = ( - 2; - 2\sqrt 3 ),\overrightarrow b = (3;\sqrt 3 )\)
-
Giải bài 10 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho bốn điểm \(A\left( {7; - 3} \right),B\left( {8;4} \right),C\left( {1;5} \right),D\left( {0; - 2} \right)\). Chứng minh rằng tứ giác ABCD là hình vuông
-
Giải bài 11 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Một máy bay đang hạ cánh với vận tốc \(\vec{v}\) = (-210; -42). Cho biết vận tốc của gió là \(\vec{w}\) = (-12; -4) và một đơn vị trên hệ trục tọa độ tương ứng với 1 km. Tìm độ dài vectơ tổng hai vận tốc \(\vec{v}\) và \(\vec{w}\)
-
Giải Bài 1 trang 58 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho hai vectơ \(\overrightarrow a = \left( {1;2} \right),\overrightarrow b = \left( {3;0} \right)\)
a) Tìm tọa độ của vectơ \(2\overrightarrow a + 3\overrightarrow b \)
b) Tính các tính vô hướng \(\overrightarrow a .\overrightarrow b ,\left( {3\overrightarrow a } \right).\left( {2\overrightarrow b } \right)\)
-
Giải Bài 2 trang 58 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho ba vectơ \(\overrightarrow m = \left( {1;1} \right),\overrightarrow n = \left( {2;2} \right),\overrightarrow p = \left( { - 1; - 1} \right)\).
Tìm tọa độ của các vectơ
a) \(\overrightarrow m + 2\overrightarrow n - 3\overrightarrow p \);
b) \(\left( {\overrightarrow n .\overrightarrow p } \right)\overrightarrow m \)
-
Giải Bài 3 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho tam giác MNP có tọa độ của các đỉnh là \(M\left( {3;3} \right),N\left( {7;3} \right),P\left( {3;7} \right)\)
a) Tìm tọa độ trung điểm E của cạnh MN
b) Tìm tọa độ trọng tâm G của tam giác MNP
-
Giải Bài 4 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho tam giác ABC có tọa độ các đỉnh là \(A\left( {1;3} \right),B\left( {3;1} \right),C\left( {6;4} \right)\)
a) Tính độ dài ba cạnh của tam giác ABC và số đo của góc B
b) Tìm tọa độ tâm I của đường tròn ngoại tiếp của tam giác ABC
-
Giải Bài 5 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho năm điểm \(A\left( {2;0} \right),B\left( {0; - 2} \right),C\left( {3;3} \right),D\left( { - 2; - 2} \right),E\left( {1; - 1} \right)\). Trong các điểm đã cho, hãy tìm điểm:
a) Thuộc trục hoành
b) Thuộc trục tung
c) Thuộc đường phân giác của góc phần tư thứ nhất
-
Giải Bài 6 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho điểm \(M\left( {4;5} \right)\). Tìm tọa độ:
a) Điểm H là hình chiếu vuông góc của điểm M trên trục \(Ox\)
b) Điểm M’ đối xứng với M qua trục \(Ox\)
c) Điểm K là hình chiếu vuông góc của điểm M trên trục \(Oy\)
d) Điểm M’’ đối xứng với M qua trục \(Oy\)
e) Điểm C đối xứng với M qua gốc O
-
Giải Bài 7 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho ba điểm \(A\left( {1;1} \right),B\left( {2;4} \right),C\left( {4;4} \right)\)
a) Tìm tọa độ điểm D sao cho ABCD là hình bình hành
b) Tìm tọa độ giao điểm hai đường chéo của hình bình hành ABCD
-
Giải Bài 8 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho tam giác ABC có tọa độ các đỉnh là \(A\left( {1;1} \right),B\left( {7;3} \right),C\left( {4;7} \right)\) và cho các điểm \(M\left( {2;3} \right),N\left( {3;5} \right)\)
a) Chứng minh bốn điểm A, M, N, C thẳng hàng
b) Chứng minh trọng tâm của các tam giác ABC và MNB trùng nhau
-
Giải Bài 9 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho bốn điểm \(M\left( {6; - 4} \right),N\left( {7;3} \right),P\left( {0;4} \right),Q\left( { - 1; - 3} \right)\). Chứng minh rằng tứ giác MNPQ là hình vuông
-
Giải Bài 10 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Tính góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) trong các trường hợp sau:
a) \(\overrightarrow a = \left( {1; - 4} \right),\overrightarrow b = \left( {5;3} \right)\)
b) \(\overrightarrow a = \left( {4;3} \right),\overrightarrow b = \left( {6;0} \right)\)
c) \(\overrightarrow a = \left( {2;2\sqrt 3 } \right),\overrightarrow b = \left( { - 3;\sqrt 3 } \right)\)
-
Giải Bài 11 trang 60 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho điểm \(A\left( {1;4} \right)\). Gọi B là điểm đối xứng với điểm A qua gốc tọa độ O. Tìm tọa độ của điểm C có tung độ bằng 3, sao cho tam giác ABC vuông tại C
-
Giải Bài 12 trang 60 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho vectơ \(\overrightarrow a = \left( {2;2} \right)\). Hãy tìm tọa độ một vectơ đơn vị \(\overrightarrow e \) cùng hướng với vectơ \(\overrightarrow a \)