OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Hoạt động khám phá 3 trang 39 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 3 trang 39 SGK Toán 10 Chân trời sáng tạo tập 2

Trong mặt phẳng Oxy, cho điểm M. Xác định tọa độ của vectơ \(\overrightarrow {OM} \)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Hoạt động khám phá 3

Phương pháp giải

Bước 1: Từ điểm M(x;y) xác định \({M_1},{M_2}\) lần lượt là hình chiếu vuông  góc của xuống trục hoành và trục tung

Bước 2: Tìm m, n sao cho \( \overrightarrow {OM_1}= m.\overrightarrow {i}; \, \overrightarrow {OM_2}=n.\overrightarrow {j} \)

Bước 3: Dựa vào quy tắc hình bình hành, suy ra tọa độ của vectơ \(\overrightarrow {OM}\) theo \( \overrightarrow {i}; \overrightarrow {j}\).

Lời giải chi tiết

Cho điểm M(x;y) bất kì, xác định \({M_1},{M_2}\) lần lượt là hình chiếu vuông  góc của M xuống trục hoành và trục tung

Dễ thấy \(\overrightarrow {O{M_1}}= x\overrightarrow i ; \, \overrightarrow {O{M_2}}  = y \overrightarrow j \)

Áp dụng quy tắc hình bình hành ta có \(\overrightarrow {OM}  = \overrightarrow {O{M_1}}  + \overrightarrow {O{M_2}}  = x\overrightarrow i  + y\overrightarrow j \)

Vậy tọa độ của vectơ \(\overrightarrow {OM} \) là (x;y), trùng với tọa độ điểm M.

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Hoạt động khám phá 3 trang 39 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Hoạt động khám phá 1 trang 38 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 2 trang 38 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Thực hành 1 trang 40 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Vận dụng 1 trang 40 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 4 trang 40 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Thực hành 2 trang 41 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Vận dụng 2 trang 41 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 5 trang 41 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Thực hành 3 trang 42 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 6 trang 42 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Thực hành 4 trang 43 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 7 trang 43 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Thực hành 5 trang 44 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Vận dụng 3 trang 44 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 1 trang 44 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 2 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 3 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 4 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 5 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 6 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 7 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 8 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 9 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 10 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải bài 11 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải Bài 1 trang 58 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải Bài 2 trang 58 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải Bài 3 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải Bài 4 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải Bài 5 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải Bài 6 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải Bài 7 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải Bài 8 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải Bài 9 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải Bài 10 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải Bài 11 trang 60 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải Bài 12 trang 60 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

NONE
OFF