Giải bài 7 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2
Cho tam giác ABC có các điểm \(M\left( {2;2} \right),N\left( {3;4} \right),P\left( {5;3} \right)\) lần lượt là trung điểm của các cạnh AB, BC và CA
a) Tìm tọa độ các đỉnh của tam giác
b) Chứng minh rằng trọng tâm của các tam giác ABC và MNP trùng nhau
c) Giải tam giác ABC
Hướng dẫn giải chi tiết Bài 7
Phương pháp giải
a) Tọa độ trung điểm M của AB là: \(M = \left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)
b) Tọa độ trọng tâm của tam giác ABC là: \(G = \left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)
Tọa độ trọng tâm của tam giác MNP là: \(G' = \left( {\frac{{{x_M} + {x_N} + {x_P}}}{3};\frac{{{y_M} + {y_N} + {y_P}}}{3}} \right)\)
Lời giải chi tiết
a) Gọi tọa độ các điểm như sau: \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right),C\left( {{x_C};{y_C}} \right)\)
\(M\left( {2;2} \right),N\left( {3;4} \right),P\left( {5;3} \right)\) lần lượt là trung điểm của các cạnh AB, BC và CA nên ta có:
\(\left\{ \begin{array}{l}{x_A} + {x_B} = 2{x_M}=4\\{x_A} + {x_C} = 2{x_P}=10\\{x_C} + {x_B} = 2{x_N}=6\\{y_A} + {y_B} = 2{y_M}=4\\{y_A} + {y_C} = 2{y_P}=8\\{y_C} + {y_B} = 2{y_N}=6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} + {x_B} = 4\\{x_C} - {x_B} = 6\\{x_C} + {x_B} = 6\\{y_A} + {y_B} = 4\\{y_C} - {y_B} = 4\\{y_C} + {y_B} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 4\\{x_B} = 0\\{x_C} = 6\\{y_A} = 3\\{y_B} = 1\\{y_C} = 5\end{array} \right.\)
Vậy các đỉnh của tam giác có tọa độ là \(A\left( {4;3} \right),B\left( {0;1} \right),C\left( {6;5} \right)\)
b) Gọi \(G\left( {{x_G};{y_G}} \right),G'\left( {{x_{G'}};{y_{G'}}} \right)\) là trọng tâm của hai tam giác ABC và MNP
Áp dụng tính chất trọng tâm ta có:
\(\begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3} = \frac{{4 + 0 + 6}}{3} = \frac{{10}}{3};{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3} = \frac{{3 + 1 + 5}}{3} = 3\\{x_{G'}} = \frac{{{x_M} + {x_N} + {x_P}}}{3} = \frac{{2 + 3 + 5}}{3} = \frac{{10}}{3};{y_{G'}} = \frac{{{y_M} + {y_N} + {y_P}}}{3} = \frac{{2 + 4 + 3}}{3} = 3\end{array}\)
Suy ra \(G\left( {\frac{{10}}{3};3} \right)\) và \(G'\left( {\frac{{10}}{3};3} \right)\), tọa độ của chúng bằng nhau nên hai điểm G và G’ trùng nhau (đpcm)
c) Ta có: \(\overrightarrow {AB} = \left( { - 4; - 2} \right),\overrightarrow {AC} = \left( {2;2} \right),\overrightarrow {BC} = \left( {6;4} \right)\)
Suy ra: \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{( - 4)}^2} + {{( - 2)}^2}} = 2\sqrt 5 ,AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \)
\(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{6^2} + {4^2}} = 2\sqrt {13} \)
\(\begin{array}{l}\cos A = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{AB.AC}} = \frac{{( - 4).2 + ( - 2).2}}{{2\sqrt 5 .2\sqrt 2 }} = - \frac{{3\sqrt {10} }}{{10}} \Rightarrow \widehat A \approx 161^\circ 33'\\\cos B = \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {BA} .\overrightarrow {BC} }}{{BA.BC}} = \frac{{4.6 + 2.4}}{{2\sqrt 5 .2\sqrt {13} }} = \frac{{8\sqrt {65} }}{{65}} \Rightarrow \widehat B = 7^\circ 7'\\\widehat C = 180^\circ - \widehat A - \widehat B = 180^\circ - 161^\circ 33' - 7^\circ 7' = 11^\circ 20'\end{array}\)
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Giải bài 5 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 10 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 11 trang 45 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 1 trang 58 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 2 trang 58 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 7 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 8 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 9 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 10 trang 59 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 11 trang 60 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 12 trang 60 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.