-
Câu hỏi:
Nghiệm của phương trình \(\dfrac{{\sqrt {4{x^2} + 7x - 2} }}{{x + 2}} = \sqrt 2 \) là:
-
A.
\(x = \dfrac{-5}{2}\)
-
B.
\(x = \dfrac{1}{2}\)
-
C.
\(x = \dfrac{3}{2}\)
-
D.
\(x = \dfrac{5}{2}\)
Lời giải tham khảo:
Đáp án đúng: D
Điều kiện: \(\left\{ {\begin{array}{*{20}{c}}{4{x^2} + 7x - 2 \ge 0}\\{x + 2 \ne 0}\end{array}} \right.\)
\(\dfrac{{\sqrt {4{x^2} + 7x - 2} }}{{x + 2}} = \sqrt 2 \) \( \Rightarrow \sqrt {4{x^2} + 7x - 2} = \sqrt 2 .\left( {x + 2} \right)\) \( \Rightarrow 4{x^2} + 7x - 2 = 2{(x + 2)^2}\)
\(\begin{array}{l}
\Leftrightarrow 4{x^2} + 7x - 2 = 2\left( {{x^2} + 4x + 4} \right)\\
\Leftrightarrow 4{x^2} + 7x - 2 = 2{x^2} + 8x + 8
\end{array}\)\( \Leftrightarrow 2{x^2} - x - 10 = 0\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \dfrac{5}{2}}\\{x = - 2}\end{array}} \right.\)
Ta thấy chỉ có giá trị \(x = \dfrac{5}{2}\) thỏa mãn điều kiện và nghiệm đúng phương trình.
Vậy nghiệm của phương trình là \(x = \dfrac{5}{2}\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Nghiệm của phương trình \(\sqrt{2 x-5}+\sqrt{x+2}=\sqrt{2 x+1}\) là:
- Nghiệm của phương trình \(\sqrt{25-x^{2}}+1=x\) là:
- Nghiệm của phương trình \(\sqrt{4+2 x-x^{2}}=x-2\) là:
- Giải phương trình \(\frac{2 x^{2}+5 x-1}{\sqrt{x-1}}=\frac{x+5}{\sqrt{x-1}}\)
- Giải phương trình sau: \(2 x+\frac{3}{x-2}=\frac{3 x}{x-2}\) Nhấp chuột và kéo để di chuyển
- Giải phương trình \(\frac{x^{2}-4 x+3}{\sqrt{x-1}}=\sqrt{x-1}\)
- Giải phương trình \(\frac{x^{2}+x+3}{x+2}=3\)
- Giải phương trình \(\sqrt {2{x^2} - 8x + 4} = x - 2\)
- Nghiệm của phương trình \(\dfrac{{\sqrt {4{x^2} + 7x - 2} }}{{x + 2}} = \sqrt 2 \) là:
- Nghiệm của phương trình \(\sqrt {2{x^2} + 3x - 4} = \sqrt {7x + 2} \) là: