Bài tập 8 tr 100 sách BT Toán lớp 9 Tập 2
Trên một đường tròn, có cung \(AB\) bằng \(140^o,\) cung \(AD\) nhận \(B\) làm điểm chính giữa, cung \(CB\) nhận \(A\) là điểm chính giữa. Tính số đo cung nhỏ \(CD\) và cung lớn \(CD.\)
Hướng dẫn giải chi tiết
Hướng dẫn giải
Ta sử dụng kiến thức:
+) Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.
+) Số đo của cung lớn bằng hiệu giữa \(360^o\) và số đo cung nhỏ (có chung hai đầu mút với cung lớn).
Lời giải chi tiết
Vì cung \(AD\) nhận \(B\) làm điểm chính giữa, cung \(CB\) nhận \(A\) là điểm chính giữa nên \(\overparen{AB} = \overparen{BD} = \overparen{AC}\)
\( \Rightarrow \widehat {AOB} = \widehat {BOD} = \widehat {AOC} = {140^0}\)
Kẻ đường kính \(AA’, BB’\) ta có:
\(\widehat {AOB} + \widehat {AOB'} = {180^0}\) (hai góc kề bù)
\( \Rightarrow \widehat {AOB'} = {180^0} - \widehat {AOB} \)\(= {180^0} - {140^0} = {40^0}\)
Suy ra: \(\widehat {BOA'} = \widehat {AOB'} = {40^0}\) (hai góc đối đỉnh)
\(\widehat {B'OD} + \widehat {BOD} = {180^0}\) (hai góc kề bù)
\( \Rightarrow \widehat {B'OD} = {180^0} - \widehat {BOD}\)\( = {180^0} - {140^0} = {40^0}\)
\(\widehat {AOC} = \widehat {AOB'} + \widehat {B'OD} + \widehat {DOC}\)
\( \Rightarrow \widehat {DOC} = \widehat {AOC} - \widehat {AOB'} - \widehat {B'OD}\)\( = {140^0} - {40^0} - {40^0} = {60^0}\)
\(sđ \overparen{CD} (nhỏ) = \widehat {COD} = {60^0}\)
\(sđ \overparen{CD} (lớn) =360^o- sđ \overparen{CD} (nhỏ)\)\( = 360^o-60^o = 300^o\)
-- Mod Toán 9 HỌC247
Bài tập SGK khác
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.