OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 39 trang 83 SGK Toán 9 Tập 2

Giải bài 39 tr 83 sách GK Toán 9 Tập 2

Cho AB và CD là hai đường kính vuông góc của đường tròn (O). Trên cung nhỏ BD lấy một điểm M. Tiếp tuyến tại M cắt tia AB ở E, đoạn thẳng CM cắt AB ở S.Chứng minh ES = EM

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết bài 39

Để chứng minh hai cạnh bằng nhau ở bài 39, ta sẽ chứng minh hai góc bằng nhau trong tam giác cân. Muốn chứng minh các góc bằng nhau, ta xem các góc ấy có nằm trong các góc đã học hay không rồi dựa vào các tính chất để suy ra bài toán.

Ta có góc MSE là góc có đỉnh nằm trong đường tròn nên:

\(\widehat{MSE}=\frac{sd\widehat{AC}+sd\widehat{BM}}{2}\)

 Góc CME là góc tạo bởi tiếp tuyến ME và dây cung MC nên:

\(\widehat{CME}=\frac{sd\widehat{CM}}{2}=\frac{sd\widehat{CB}+sd\widehat{BM}}{2}\)

Mà AB và CD là hai đường kính vuông góc với nhau nên chia đường tròn thành 4 cung có số đo bằng nhau, tức là:

\(sd\widehat{AC}=sd\widehat{BC}\)

Từ các điều trên, ta suy ra được:

\(\widehat{MSE}=\widehat{SME}\)

Vậy tam giác SEM cân tại E

\(\Rightarrow SE=EM\Rightarrow dpcm\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 39 trang 83 SGK Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Nguyễn Thanh Hà
    Theo dõi (0) 1 Trả lời
  • Nguyễn Xuân Ngạn
    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Song Thu

    A. EC2 = ED.DO

    B. CD2 = OE.ED

    C. OB2 = OD.OE

    D. CA = 1/2EO

    Theo dõi (0) 1 Trả lời
NONE
OFF