OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 38 trang 82 SGK Toán 9 Tập 2

Giải bài 38 tr 82 sách GK Toán 9 Tập 2

Trên một đường tròn, lấy liên tiếp ba cung AC, CD, DB sao cho số đo cung AC bằng số đo cung CD bằng số đo cung DB bằng 60 độ. Hai đường thẳng AC và BD cắt nhau tại E. Hai tiếp tuyến của đường tròn tại B và C cắt nhau tại T. Chứng minh rằng:

\(a) \widehat{AEB}=\widehat{BTC}\)

b) CD là phân giác của góc BCT

 

ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết bài 38

Với bài toán 38 này, chúng ta có thể sử dụng cách chứng minh thông thường, bằng tổng các góc trong một tam giác, tứ giác, tia phân giác, v..v. Tuy nhiên, ta cũng có thể sử dụng góc có đỉnh nằm ngoài đường tròn để tính nhanh chóng hơn.

Câu a:

 Ta có góc AEB là góc có đỉnh ở bên ngoài đường tròn nên:

\(\widehat{AEB}=\frac{sd\widehat{AB}-sd\widehat{CD}}{2}=60^o\)

Mặc khác xét tứ giác OBTC ta có:

\(\widehat{OCT}+\widehat{CTB}+\widehat{TBO}+\widehat{BOC}=360^o\)

\(\Leftrightarrow 90^o+\widehat{CTB}+90^o+120^o=360^o\)

\(\Rightarrow \widehat{BTC}=60^o\)

\(\Rightarrow \widehat{BTC}=\widehat{AEB}\)

Câu b:

Góc DCT là góc tạo bởi tiếp tuyến CT và dây cung BC nên:

\(\widehat{DCT}=\frac{1}{2}sd\widehat{CD}=30^o\)

Góc DCB là góc nội tiếp chắn cung BD nên:

\(\widehat{DCB}=\frac{1}{2}sd\widehat{BD}=30^o\)

Vậy CD là tia phân giác của góc BTC

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 38 trang 82 SGK Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Nguyen Phuc
    Theo dõi (0) 1 Trả lời
  • Bảo Hân
    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Lê Tường Vy
    Theo dõi (0) 1 Trả lời
NONE
OFF