Giải bài 24 tr 10 sách BT Toán lớp 9 Tập 2
Giải các hệ phương trình sau bằng cách đặt ẩn số phụ:
a)
\(\left\{ {\matrix{
{{1 \over x} + {1 \over y} = {4 \over 5}} \cr
{{1 \over x} - {1 \over y} = {1 \over 5}} \cr} } \right.\)
b)
\(\left\{ {\matrix{
{{{15} \over x} - {7 \over y} = 9} \cr
{{4 \over x} + {9 \over y} = 35} \cr} } \right.\)
c)
\(\left\{ {\matrix{
{{1 \over {x + y}} + {1 \over {x - y}} = {5 \over 8}} \cr
{{1 \over {x + y}} - {1 \over {x - y}} = - {3 \over 8}} \cr} } \right.\)
d)
\(\left\{ {\matrix{
{{4 \over {2x - 3y}} + {5 \over {3x + y}} = - 2} \cr
{{3 \over {3x + y}} - {5 \over {2x - 3y}} = 21} \cr} } \right.\)
e)
\(\left\{ {\matrix{
{{7 \over {x - y + 2}} - {5 \over {x + y - 1}} = 4,5} \cr
{{3 \over {x - y + 2}} + {2 \over {x + y - 1}} = 4} \cr} } \right.\)
Hướng dẫn giải chi tiết
Hướng dẫn giải
Sử dụng:
- Cách giải hệ phương trình bằng phương pháp đặt ẩn số phụ:
+ Bước 1: Đặt điều kiện để hệ có nghĩa
+ Bước 2: Đặt ẩn phụ và điều kiện của ẩn phụ
+ Bước 3: Giải hệ theo các ẩn phụ đã đặt (sử dụng phương pháp thế)
+ Bước 4: Trở lại ẩn ban đầu để tìm nghiệm của hệ.
Lời giải chi tiết
a) Đặt \({1 \over x} = a;{1 \over y} = b\) điều kiện \(x \ne 0;y \ne 0.\) Ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{a + b = {4 \over 5}} \cr
{a - b = {1 \over 5}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a = b + {1 \over 5}} \cr
{b + {1 \over 5} + b = {4 \over 5}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = b + {1 \over 5}} \cr
{2b = {3 \over 5}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a = b + {1 \over 5}} \cr
{b = {3 \over {10}}} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = {1 \over 2}} \cr
{b = {3 \over {10}}} \cr} } \right. \cr} \)
Suy ra:
\(\left\{ {\matrix{
{{1 \over x} = {1 \over 2}} \cr
{{1 \over y} = {3 \over {10}}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr
{y = {{10} \over 3}} \cr} } \right.\)
Vậy hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( {2;{{10} \over 3}} \right)\)
b) Đặt \({1 \over x} = a;{1 \over y} = b\) điều kiện \(x \ne 0;y \ne 0\) ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{15a - 7b = 9} \cr
{4a + 9b = 35} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{15a - 9} \over 7}} \cr
{4a + 9.{{15a - 9} \over 7} = 35} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{15a - 9} \over 7}} \cr
{28a + 135a - 81 = 245} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{15a - 9} \over 7}} \cr
{163a = 326} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{15a - 9} \over 7}} \cr
{a = 2} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 3} \cr
{a = 2} \cr} } \right. \cr} \)
Suy ra:
\(\left\{ {\matrix{
{{1 \over x} = 2} \cr
{{1 \over y} = 3} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = {1 \over 2}} \cr
{y = {1 \over 3}} \cr} } \right.\)
Hai giá trị x, y thỏa mãn điều kiện
Vậy hệ phương trình có nghiệm: (x; y) = \(\left( {{1 \over 2};{1 \over 3}} \right)\)
c) Đặt \({1 \over {x + y}} = a;{1 \over {x - y}} = b.\) Điều kiện \(x \ne \pm y\). Ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{a + b = {5 \over 8}} \cr
{a - b = - {3 \over 8}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a = b - {3 \over 8}} \cr
{b - {3 \over 8} + b = {5 \over 8}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = b - {3 \over 8}} \cr
{b = {1 \over 2}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a = {1 \over 8}} \cr
{b = {1 \over 2}} \cr} } \right. \cr} \)
Suy ra:
\(\eqalign{
& \left\{ {\matrix{
{{1 \over {x + y}} = {1 \over 8}} \cr
{{1 \over {x - y}} = {1 \over 2}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x + y = 8} \cr
{x - y = 2} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = y + 2} \cr
{y + 2 + y = 8} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = y + 2} \cr
{2y = 6} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = y + 2} \cr
{y = 3} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 5} \cr
{y = 3} \cr} } \right. \cr} \)
Hai giá trị x, y thỏa mãn điều kiện
Vậy hệ phương trình có nghiệm: (x; y) = (5; 3).
d) Đặt \({1 \over {2x - 3y}} = a;{1 \over {3x + y}} = b.\) Điều kiện \(x \ne {3 \over 2}y;x \ne - {1 \over 3}y.\) Ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{4a + 5b = - 2} \cr
{3b - 5a = 21} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = {{5a + 21} \over 3}} \cr
{4a + 5.{{5a + 21} \over 3} = - 2} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{5a + 21} \over 3}} \cr
{12a + 25a + 105 = - 6} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{5a + 21} \over 3}} \cr
{37a = - 111} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{5a + 21} \over 3}} \cr
{a = - 3} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 2} \cr
{a = - 3} \cr} } \right. \cr} \)
Suy ra:
\(\eqalign{
& \left\{ {\matrix{
{{1 \over {2x - 3y}} = - 3} \cr
{{1 \over {3x + y}} = 2} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{2x - 3y = - {1 \over 3}} \cr
{3x + y = {1 \over 2}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = {1 \over 2} - 3x} \cr
{2x - 3\left( {{1 \over 2} - 3x} \right) = {1 \over 3}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = {1 \over 2} - 3x} \cr
{2x + 9x = - {1 \over 3} + {3 \over 2}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = {1 \over 2} - 3x} \cr
{11x = {7 \over 6}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = {1 \over 2} - 3x} \cr
{x = {7 \over {66}}} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = {1 \over 2} - {7 \over {22}}} \cr
{x = {7 \over {66}}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = {2 \over {11}}} \cr
{x = {7 \over {66}}} \cr} } \right. \cr} \)
Hai giá trị \(x = {7 \over {66}};y = {2 \over {11}}\) thỏa mãn điều kiện
Vậy hệ phương trình có nghiệm: (x; y) = \(\left( {{7 \over {66}};{2 \over {11}}} \right)\)
e) Đặt \({1 \over {x - y + 2}} = a;{1 \over {x + y - 1}} = b.\) Điều kiện \(x - y + 2 \ne 0;x + y - 1 \ne 0.\)
Ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{7a - 5b = 4,5} \cr
{3a + 2b = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{b = {{4 - 3a} \over 2}} \cr
{7a - 5.{{4 - 3a} \over 2} = 4,5} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{4 - 3a} \over 2}} \cr
{14a - 20 + 15a = 9} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = {{4 - 3a} \over 2}} \cr
{29a = 29} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = {{4 - 3a} \over 2}} \cr
{a = 1} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = {1 \over 2}} \cr
{a = 1} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{{1 \over {x - y + 2}} = 1} \cr
{{1 \over {x + y - 1}} = {1 \over 2}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x - y + 2 = 1} \cr
{x + y - 1 = 2} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = y - 1} \cr
{y - 1 + y - 1 = 2} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = y - 1} \cr
{2y = 4} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = y - 1} \cr
{y = 2} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 1} \cr
{y = 2} \cr} } \right. \cr} \)
Giá trị của x và y thỏa mãn điều kiện
Vậy hệ phương trình có nghiệm: (x; y) = (1; 2).
-- Mod Toán 9 HỌC247
Bài tập SGK khác
-
Giải hpt:
\(\left\{{}\begin{matrix}\dfrac{y^2-x^2}{\sqrt{x-1}}=2y-\sqrt{x-1}\\x^2+y^2=3x-1\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình a+b=50, a^2+b^2=14,5
bởi Nguyễn Tiểu Ly 16/01/2019
Giải hệ phương trình:
a+b=50%
a^2+b^2=14,5%
em cảm ơn ạ
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình x^2−xy+y^2=7, x+y=5
bởi thanh hằng 16/01/2019
Giải HPT:
\(\left\{{}\begin{matrix}x^2-xy+y^2=7\\x+y=5\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình x+2y=a+2, x−y=4a−1
bởi Trịnh Lan Trinh 16/01/2019
\(\left\{{}\begin{matrix}x+2y=a+2\\x-y=4a-1\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
ADMICRO
Giải hệ phương trình x+2y=1, −3x−y=−2
bởi Thùy Trang 28/01/2019
giải hệ PT sau
\(\left\{{}\begin{matrix}x+2y=1\\-3x-y=-2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}4x-5y=9\\7x+y=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}8x+2y=13\\x+y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}5x-3y=1\\2x+y=7\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình căn3x−y=1, x+y=căn3
bởi Lê Tấn Vũ 28/01/2019
\(\left\{{}\begin{matrix}\sqrt{3}x-y=1\\x+y=\sqrt{3}\end{matrix}\right.\)
giải hệ PT
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình x + căn2 y =3, − x + y = căn2
bởi sap sua 28/01/2019
\(\left\{{}\begin{matrix}x+\sqrt{2}y=3\\-x+y=\sqrt{2}\end{matrix}\right.\)
giải hệ PT
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình 17x + 2y = 2011 |xy|, x − 2y = 3xy
bởi Truc Ly 18/01/2019
Giải hệ phương trình: \(\left\{{}\begin{matrix}17x+2y=2011\left|xy\right|\\x-2y=3xy\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình 1/2 (x+2)(y+3)=1/2xy+50, 1/2(x−2)(y−2)=1/2xy−32
bởi Nguyễn Minh Minh 18/01/2019
Giải hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)=\dfrac{1}{2}xy+50\\\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=\dfrac{1}{2}xy-32\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
\(\left\{{}\begin{matrix}x^2y^2-xy-2=0\\x^2+y^2=x^2y^2\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình x .(x + 3y) = 4, 4y^2 = 5 - xy
bởi thuy linh 29/01/2019
Giải hệ phương trình:
{ x .(x + 3y) = 4 ; 4y2 = 5 - xy}
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình −20y^3−3y^2+3xy+x−y=0, x^2+y^2−3y=1
bởi Kim Ngan 29/01/2019
help me!!!!!!
giải hpt sau bằng phương pháp rút thế
\(\left\{{}\begin{matrix}-20y^3-3y^2+3xy+x-y=0\\x^2+y^2-3y=1\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
giải hpt:
\(\left\{{}\begin{matrix}x+2y=3\\\sqrt{\dfrac{x+2}{2x+1}}-2\sqrt{\dfrac{7-4x}{5-2y}}=1\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình 2x^3−9y^3=(x−y)(2xy+3), x^2+y^2=xy+3
bởi A La 29/01/2019
Giải hệ phương trình:
\(\left\{{}\begin{matrix}2x^3-9y^3=\left(x-y\right)\left(2xy+3\right)\\x^2+y^2 =xy+3\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời