OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 16 trang 159 SBT Toán 9 Tập 1

Bài tập 16 trang 159 SBT Toán 9 Tập 1

Tứ giác ABCD có \(\widehat B = \widehat D = {90^0}\)

a. Chứng minh rằng bốn điêm A, B, C, D cùng thuộc một đường tròn

b. So sánh độ dài AC và BD. Nếu AC = BD thì tứ giác ABCD là hình gì?

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác ABC vuông tại B có BM là đường trung tuyến nên:

BM = (1/2).AC (tính chất tam giác vuông)

Tam giác ACD vuông tại D có DM là đường trung tuyến nên:

DM = (1/2).AC (tính chất tam giác vuông)

Suy ra: MA = MB = MC = MD

Vậy bốn điểm A, B, C, D cùng nằm trên một đường tròn tâm M bán kính bằng (1/2).AC.

b. Trong đường tròn tâm M ta có BD là dây cung không đi qua tâm, AC là đường kính nên: BD < AC

AC = BD khi và chỉ khi BD là đường kính. Khi đó tứ giác ABCD là hình chữ nhật.

 

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 16 trang 159 SBT Toán 9 Tập 1 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Nguyễn Thị Bích

    Theo dõi (0) 0 Trả lời
  • Đỗ Xuân Tuyền

    Theo dõi (0) 0 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Nguyễn Phong

     

    Theo dõi (1) 0 Trả lời
NONE
OFF