OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 19 trang 159 SBT Toán 9 Tập 1

Giải bài 19 tr 159 sách BT Toán lớp 9 Tập 1

Cho đường tròn (O), đường kính \(AD = 2R\). Vẽ cung tâm \(D\) bán kính \(R\), cung này cắt đường tròn (O) ở \(B\) và \(C.\)  

a) Tứ giác \(OBDC\) là hình gì? Vì sao?

b) Tính số đo các góc \(CBD, CBO, OBA.\)

c) Chứng minh rằng tam giác \(ABC\) là tam giác đều.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

+ Tứ giác có tất cả các cạnh bằng nhau thì tứ giác đó là hình thoi.

+ Tam giác cân có một góc bằng \(60^\circ \) là tam giác đều.

Lời giải chi tiết

a) Ta có:

\(OB = OC = R\) (vì \(B, C\) nằm trên \((O ; R))\) 

\(DB = DC = R\) ( vì \(B, C\) nằm trên \((D ; R))\)

Suy ra: \(OB = OC = DB = DC.\)

Vậy tứ giác \(OBDC\) là hình thoi.

b) Ta có: \(OB = OD = BD = R\)

\(∆OBD\) đều \( \Rightarrow \widehat {OBD} = 60^\circ \)

Vì \(OBDC\) là hình thoi nên:

\(\widehat {CBD} = \widehat {OBC} = \dfrac{1 }{ 2}\widehat {OBD} = 30^\circ \)

Tam giác \(ABD\) nội tiếp trong (O) có \(AD\) là đường kính nên:

\(\widehat {ABD} = 90^\circ \)

Suy ra \(\widehat {OBD} + \widehat {OBA} = 90^\circ \)

Nên \(\widehat {OBA} = \widehat {ABD} - \widehat {OBD}\)\( = 90^\circ  - 60^\circ  = 30^\circ \)

c) Tứ giác \(OBDC\) là hình thoi nên \(OD ⊥ BC\) hay \(AD ⊥ BC\)

Suy ra AD là đường trung trực của BC (vì O là tâm đường tròn ngoại tiếp tam giác ABC và \(O\in AD\)) 

Ta có:     

\(AB = AC\) ( tính chất đường trung trực)

Suy ra tam giác \(ABC\) cân tại \(A\)   (1)

Mà  \(\widehat {ABC} = \widehat {OBC} + \widehat {OBA} \)\(= 30^\circ  + 30^\circ  = 60^\circ \).  (2)

Từ (1) và (2) suy ra tam giác \(ABC\) đều.

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 19 trang 159 SBT Toán 9 Tập 1 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Phạm Khánh Linh

    Cho nửa đường tròn tâm O đường kính AB điểm C nằm chính giữa cung AB , trên cung BC lấy điểm M ,hạ đường cao CH của Δ ACM.

    a, CM: △HCM vuông cân

    b, Gọi giao điểm của OH với BC là I , kẻ dây BD vuông với OI . CMR : M,I,B thẳng hàng

    Theo dõi (0) 1 Trả lời
  • Lê Tường Vy

    Cho đường tròn tâm O, đường kính AB, hai dây AC và BD song song với nhau, AC = BD. Chứng minh ba điểm C, O, D thẳng hàng.

    (Không chứng minh dựa vào tính chất của cung)

    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    bach hao

    MỌI NGƯỜI GIÚP MÌNH GIẢI BÀI NÀY VỚI Ạ!! (giải ngay bây giờ luôn í ạ )

    Cho đường tròn (O) đường kính AB = 2R, vẽ đường tròn (O') đường kính OA = 2r.

    a)Xác định vị trí tương đối của hai đường tròn (O) và (O').

    b)Trên đường tròn (O') lấy điểm C (C khác A và O), gọi D là điểm đối xứng với A qua C. Chứng minh điểm D thuộc đường tròn (O).

    c)Gọi H là hình chiếu của D trên AB. Chứng minh AC.AD < 2R^2

    d)Tìm vị trí của điểm C trên đường tròn (O') để AB = 2DH.

    Theo dõi (0) 1 Trả lời
NONE
OFF