OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 14 trang 43 SGK Toán 9 Tập 2

Giải bài 14 tr 43 sách GK Toán 9 Tập 2

Hãy giải phương trình: \(2x^2 + 5x + 2 = 0\). Theo các bước như ví dụ 3 trong bài học.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết bài 14

Giải bài 14 này, chúng ta áp dụng phương pháp của bài 13

\(2x^2 + 5x + 2 = 0\)

\(\small \Leftrightarrow 2x^2+2.x\sqrt{2}.\left (\frac{5}{2\sqrt{2}} \right )+\left (\frac{5}{2\sqrt{2}} \right )^2-\left (\frac{5}{2\sqrt{2}} \right )^2+2=0\)

\(\small \Leftrightarrow \left (x\sqrt{2}+\frac{5}{2\sqrt{2}} \right )^2=\frac{9}{8}=\left (\frac{3\sqrt{2}}{4} \right )^2\)

\(\small x\sqrt{2}+\frac{5}{2\sqrt{2}}=\frac{3\sqrt{2}}{4}\) (1)

hoặc \(\small x\sqrt{2}+\frac{5}{2\sqrt{2}}=-\frac{3\sqrt{2}}{4}\) (2)

Giải (1):

\(\small x=-\frac{1}{2}\)

Giải (2):

\(\small x=-2\)

Vậy phương trình có hai nghiệm phân biệt là:

\(\small x=-\frac{1}{2}\) hoặc \(\small x=-2\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 14 trang 43 SGK Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF