OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 1.3 trang 24 SBT Toán 8 Tập 1

Giải bài 1.3 tr 24 sách BT Toán lớp 8 Tập 1

Cho hai phân thức \({P \over Q}\) và\({R \over S}\).

Chứng minh rằng :

a. Nếu \({P \over Q} = {R \over S}\) thì \({{P + Q} \over Q} = {{R + S} \over S}\)

b. Nếu  và P ≠ Q thì R ≠ S và  

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết

Hướng dẫn giải

- Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

- Cho đẳng thức \(a=b\) \( \Rightarrow a + c = b + c\) 

Lời giải chi tiết

a. 

\(\displaystyle{P \over Q} = {R \over S}\)

\( \Rightarrow PS = QR\)                   (1)

Vì \(\displaystyle{P \over Q},{R \over S}\) là phân thức nên \(Q, S\ne 0\).

Cộng vào hai vế của đẳng thức (1) với \(Q S\) ta được:

\(P S + Q S = Q R + Q S \)

\(⇒ S(P + Q) = Q (R + S)\)

\(⇒ \displaystyle {{P + Q} \over Q} = {{R + S} \over S}\)

b. 

\(\displaystyle {P \over Q} = {R \over S}\)

\(⇒ P S = Q R \)  (2) và \(P ≠ Q, R ≠ S\)

Trừ từng vế đẳng thức (2) với \(PR\) ta được :

\(P S - P R = Q R - P R\)

\(⇒ P (S - R) = R (Q -P) \)

\(⇒ \displaystyle {P \over {Q - P}} = {R \over {S - R}}\).

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 1.3 trang 24 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF