OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 1.1 trang 24 SBT Toán 8 Tập 1

Giải bài 1.1 tr 24 sách BT Toán lớp 8 Tập 1

Tìm đa thức P để \({{x - 3} \over {{x^2} + x + 1}} = {P \over {{x^3} - 1}}\) .

Phương án nào sau đây là đúng ?

A. \(P = {x^2} + 3\)

B. \(P = {x^2} - 4x + 3\)

C. \(P = x + 3\)

D. \(P = {x^2} - x - 3\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).  

Lời giải chi tiết

Ta có:

\(\dfrac{{x - 3}}{{{x^2} + x + 1}} = \dfrac{P}{{{x^3} - 1}}\)
\(\Leftrightarrow \left( {x - 3} \right)\left( {{x^3} - 1} \right) \)\(= \left( {{x^2} + x + 1} \right).P\)
\(\Leftrightarrow \left( {x - 3} \right)\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) \)\(= \left( {{x^2} + x + 1} \right).P\)
\(\Leftrightarrow \left( {{x^2} + x + 1} \right)\left( {{x^2} - 4x + 3} \right)\)\( = \left( {{x^2} + x + 1} \right).P
\)

Suy ra \(P=x^2-4x+3\)

Chọn B.

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 1.1 trang 24 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF