Giải bài 1 tr 103 sách GK Toán ĐS & GT lớp 11
Chứng minh các dãy số \((\frac{3}{5}. 2^n)\) , \((\frac{5}{2^{n}})\), \(((-\frac{1}{2})^{n})\) là các cấp số nhân.
Hướng dẫn giải chi tiết bài 1
Xét \((u_n)\) với \(u_n=\frac{3}{5}.2^n\), ta có \(\frac{u_{n+1}}{u_n}=\frac{\frac{3}{5}.2^{n+1}}{\frac{3}{5}.2^n}=2\)
\(\Leftrightarrow u_{n+1}=2.u_n\Rightarrow (u_n)\) là cấp số nhân có \(u_1=\frac{6}{5}\) và q = 2.
Xét \((u_n)\) với \(u_n=\frac{5}{2^n}\), ta có \(\frac{u_{n+1}}{u_n}=\frac{\frac{5}{2}.2^{n+1}}{\frac{5}{2^n}}= \frac{5.2^n}{5.2^{n+1}}=\frac{1}{2}\)
\(\Leftrightarrow u_{n+1}=\frac{1}{2}\Rightarrow (u_n)\) là cấp số nhân có \(u_1=\frac{5}{2}\) và \(q=\frac{1}{2}.\)
Xét \((u_n)\) với \(u_n=\left ( -\frac{1}{2} \right )^n\), ta có \(\frac{u_{n+1}}{n}= \frac{\left ( -\frac{1}{2} \right )^{n+1}}{\left ( -\frac{1}{2} \right )^{n}}=-\frac{1}{2}\)
\(\Leftrightarrow u_{n+1}=-\frac{1}{2}.(u_n)\Rightarrow (u_n)\) là cấp số nhân có \(u_1=-1\) và \(q=-\frac{1}{2}.\)
-- Mod Toán 11 HỌC247
Video hướng dẫn giải bài 1 SGK
Bài tập SGK khác
Bài tập 2 trang 103 SGK Đại số & Giải tích 11
Bài tập 3 trang 103 SGK Đại số & Giải tích 11
Bài tập 4 trang 104 SGK Đại số & Giải tích 11
Bài tập 5 trang 104 SGK Đại số & Giải tích 11
Bài tập 6 trang 104 SGK Đại số & Giải tích 11
Bài tập 3.27 trang 131 SBT Toán 11
Bài tập 3.28 trang 131 SBT Toán 11
Bài tập 3.29 trang 131 SBT Toán 11
Bài tập 3.30 trang 131 SBT Toán 11
Bài tập 3.31 trang 131 SBT Toán 11
Bài tập 3.32 trang 131 SBT Toán 11
Bài tập 3.33 trang 131 SBT Toán 11
Bài tập 3.34 trang 132 SBT Toán 11
Bài tập 3.35 trang 132 SBT Toán 11
Bài tập 3.36 trang 132 SBT Toán 11
Bài tập 29 trang 120 SGK Toán 11 NC
Bài tập 30 trang 120 SGK Toán 11 NC
Bài tập 31 trang 121 SGK Toán 11 NC
Bài tập 32 trang 121 SGK Toán 11 NC
Bài tập 33 trang 121 SGK Toán 11 NC
Bài tập 34 trang 121 SGK Toán 11 NC
Bài tập 35 trang 121 SGK Toán 11 NC
Bài tập 36 trang 121 SGK Toán 11 NC
Bài tập 37 trang 121 SGK Toán 11 NC
Bài tập 38 trang 121 SGK Toán 11 NC
Bài tập 39 trang 122 SGK Toán 11 NC
Bài tập 40 trang 122 SGK Toán 11 NC
Bài tập 41 trang 122 SGK Toán 11 NC
-
Tính tổng \({S_n} = 1 + 2 + {2^2} + ... + {2^n}\)
bởi Đào Thị Nhàn 17/04/2022
Theo dõi (0) 1 Trả lời -
Cho dãy số sau \(\left( {{u_n}} \right):\left\{ \begin{array}{l}{u_1} = 0\\{u_{n + 1}} = \dfrac{{2{u_n} + 3}}{{{u_n} + 4}}{\rm{ voi }}n \ge 1.\end{array} \right.\)
bởi Trieu Tien 17/04/2022
Lập dãy số \(\left( {{x_n}} \right)\) với \({x_n} = \dfrac{{{u_n} - 1}}{{{u_n} + 3}}.\) Chứng minh dãy số \(\left( {{x_n}} \right)\) là cấp số nhân.
Theo dõi (0) 1 Trả lời -
Thực hiện viết bốn số xen giữa các số \(5\) và \(160\) để được một cấp số nhân.
bởi Nguyễn Hoài Thương 18/04/2022
Theo dõi (0) 1 Trả lời -
Bốn số lập thành một cấp số cộng. Lần lượt trừ mỗi số ấy cho \(2,6,7,2\) ta nhận được một cấp số nhân. Hãy tìm các số đó.
bởi Bùi Anh Tuấn 17/04/2022
Theo dõi (0) 1 Trả lời -
ADMICRO
Thực hiện tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết: \(\left\{ \begin{array}{l}{u_2} - {u_4} + {u_5} = 10\\{u_3} - {u_5} + {u_6} = 20\end{array} \right.\)
bởi Thanh Thanh 18/04/2022
Theo dõi (0) 1 Trả lời