OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 12 trang 71 SGK Hình học 10 NC

Bài tập 12 trang 71 SGK Hình học 10 NC

Cho đường tròn (O; R) và một điểm P cố định ở bên trong đường tròn đó. Hai dây cung thay đổi AB và CD luôn đi qua P và vuông góc với nhau.

a) Chứng minh rằng AB2+CD2 không đổi.

b) Chứng minh rằng PA2+PB2+PC2+PD2 không phụ thuộc vào vị trí của điểm P.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

 

a) Gọi I, J lần lượt là trung điểm của AB, CD.

Ta có OI⊥AB; OJ⊥CD

Suy ra OIPJ là hình chữ nhật. Ta có:

\(\begin{array}{l}
A{B^2} + C{D^2} = 4\left( {A{I^2} + C{J^2}} \right)\\
 = 4\left( {O{A^2} - O{I^2} + C{O^2} - J{O^2}} \right)
\end{array}\)

\( = 4\left( {2{R^2} - O{P^2}} \right)\) (không đổi do cố định)

b) Ta có:

\(\begin{array}{*{20}{l}}
{P{A^2} + P{B^2} + P{C^2} + P{D^2}}\\
\begin{array}{l}
 = {\left( {\overrightarrow {PA}  - \overrightarrow {PB} } \right)^2} + {\left( {\overrightarrow {PC}  - \overrightarrow {PD} } \right)^2}\\
 + 2.\overrightarrow {PA} .\overrightarrow {PB}  + 2\overrightarrow {PC} .\overrightarrow {PD} 
\end{array}\\
{ = A{B^2} + C{D^2} + 4\left( {P{O^2} - {R^2}} \right)}\\
{ = 4\left( {2{R^2} - O{P^2}} \right) + 4\left( {P{O^2} - {R^2}} \right) = 4{R^2}}
\end{array}\)

Vậy \(P{A^2} + P{B^2} + P{C^2} + P{D^2}\) không phụ thuộc vào vị trí của điểm P.

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 12 trang 71 SGK Hình học 10 NC HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF