-
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) liên tục và có đạo hàm trên \(\mathbb{R}\) biết \(f'\left( x \right) = x{\left( {x - 1} \right)^2}.\) Khẳng định nào sau đây là đúng?
-
A.
Hàm số có 2 điểm cực trị tại x=0 và x=1.
-
B.
Hàm số đạt cực tiểu tại điểm x=0 và cực đại tại điểm x=1.
-
C.
Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {1; + \infty } \right)\) và đồng biến trên khoảng (0;1).
-
D.
Hàm số không có điểm cực đại.
Lời giải tham khảo:
Đáp án đúng: D
Vậy hàm số đạt cực tiểu tại x=0 và không có điểm cực đại.
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho \(y = f\left( x \right)\) liên tục và có đạo hàm trên \(\mathbb{R}\) biết \(f'\left( x \right) = x{\left( {x - 1} \right)^2}.\) Khẳng định nào sau đây là đúng?
- Tìm tất cả các điểm cực đại của \(y = - {x^4} + 2{x^2} + 1.\)
- Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của \(y = \frac{x}{{{x^2} + 1}}\) trên đoạn [0;2].
- Cho hàm số \(y = frac{x}{{x - 1}}\). Mệnh đề nào sau đây là đúng?
- Tìm giá trị lớn nhất M của hàm số \(y = cos 2x + 4cos x + 1\)
- Cho hàm số \(y = \dfrac{{\left( {m - 1} \right)\sin x - 2}}{{\sin x - m}}.\) Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng \(\left( {0;\frac{\pi }{2}} \right).\)
- Tìm tất cả các giá trị nguyên của tham số thực m để hàm số \(y = \dfrac{1}{3}{x^3} + \dfrac{1}{2}m{x^2}\) có điểm cực đại x1 điểm cực tiểu x2 sao cho \(- 2 < {x_1} < - 1;\,\,1 < {x_2} < 2.\)
- Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình \(x^3 + {x^2} + x = m{\left( {{x^2} + 1} \right)^2}\) có nghiệm thuộc đoạn [0;1].
- Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \(y = \dfrac{{x - 1}}{{{x^2} - mx + m}}\) có đúng một tiệm cận đứng.
- Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng?