OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 39 trang 57 SBT Toán 9 Tập 2

Giải bài 39 tr 57 sách BT Toán lớp 9 Tập 2

a) Chứng tỏ rằng phương trình \(3{x^2} + 2x - 21 = 0\) có một nghiệm là -3. Hãy tìm nghiệm kia

b) Chứng tỏ rằng phương trình \( - 4{x^2} - 3x + 115 = 0\) có một nghiệm là 5. Tìm nghiệm kia

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

a) 

- Thay \(x=-3\) vào vế trái của phương trình đã cho, nếu cho kết quả bằng \(0\) thì \(x=-3\) là nghiệm của phương trình đã cho.

- Theo hệ thức Vi -ét ta có \({x_1}.{x_2} = \dfrac{c}{a}\), biết \(x_1=-3\) từ đó ta tính được \(x_2\).

b) 

- Thay \(x=5\) vào vế trái của phương trình đã cho, nếu cho kết quả bằng \(0\) thì \(x=5\) là nghiệm của phương trình \( - 4{x^2} - 3x + 115 = 0\).

- Theo hệ thức Vi -ét ta có \({x_1}.{x_2} = \dfrac{c}{a}\), biết \(x_1=5\) từ đó ta tính được \(x_2\).

Lời giải chi tiết

a) 

Thay \(x = -3\) vào vế trái của phương trình ta được:

\(3.{\left( { - 3} \right)^2} + 2.\left( { - 3} \right) - 21 \)\(\,= 27 - 6 - 21 = 0\)

Vậy \(x = -3\) là nghiệm của phương trình \(3{x^2} + 2x - 21 = 0\).

Theo hệ thức Vi-ét ta có:

\(\displaystyle {x_1}{x_2} = {{ - 21} \over 3} \)

\(\displaystyle \Rightarrow  - 3.{x_2} = {{ - 21} \over 3} \Leftrightarrow {x_2} = {7 \over 3}\)

b) 

Thay \(x = 5\) vào vế trái của phương trình ta được:

\( - {4.5^2} - 3.5 + 115 \)\(\,=  - 100 - 15 + 115 = 0\)

Vậy \(x = 5\) là nghiệm của phương trình \( - 4{x^2} - 3x + 115 = 0\)

Theo hệ thức Vi-ét ta có:

\(\displaystyle {x_1}{x_2} = {{115} \over { - 4}}\)

\(\displaystyle \Rightarrow 5{x_2} =  - {{115} \over 4} \Leftrightarrow {x_2} =  - {{23} \over 4}\).

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 39 trang 57 SBT Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF