OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm m để phương trình x^2-2x-2m=0 có 2 nghiệm phân biệt (1+x_1^2)(1+x_2^2)=5

Cho phương trình: \(x^2-2x-2m=0\) (ẩn x)

a) Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\), thoả mãn \(\left(1+x^2_1\right)\left(1+x_2^2\right)=5\)

b) Khi phương trình có 2 nghiệm \(x_1,x_2\), viết phương trình bậc hai nhận \(\dfrac{1}{x_1+1}\)\(\dfrac{1}{x_2+1}\) làm nghiệm.

  bởi Lê Nhật Minh 26/10/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • f(x) =x^2 -2x -2m

    a) f(x) có hai nghiệm pb <=> 1 +2m > 0 => m>-1/2

    P=\(\left(x_1^2+1\right)\left(x_2^2+1\right)=\left(x_1.x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1\)

    \(P=\left(x_1x_2-1\right)^2+\left(x_1+x_2\right)^2=\left(2m+1\right)^2+4\)

    \(P=5\Leftrightarrow\left(2m+1\right)^2=1\Leftrightarrow\left[{}\begin{matrix}2m+1=-1;m=-1\left(l\right)\\2m+1=1;m=0\left(n\right)\end{matrix}\right.\)

    b) \(\left\{{}\begin{matrix}m\ge\dfrac{1}{2}\\1+2-2m\ne0\end{matrix}\right.\) <=> \(m\in[\dfrac{-1}{2};\dfrac{3}{2})U\left(\dfrac{3}{2};\infty\right)\)

    \(\left\{{}\begin{matrix}\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}=\dfrac{x_1+x_2+2}{x_1x_2+\left(x_1+x_2\right)+1}=\dfrac{4}{3-2m}\\\dfrac{1}{x_1+1}.\dfrac{1}{x_2+1}=\dfrac{1}{3-2m}\end{matrix}\right.\)

    phương trình cần tìm

    \(g\left(x\right)=x^2-\dfrac{4}{3-2m}+\dfrac{1}{3-2m}\) \(\Leftrightarrow\left\{{}\begin{matrix}m\in[\dfrac{-1}{2};\dfrac{3}{2})U\left(\dfrac{3}{2};\infty\right)\\\left(2m-3\right)x^2+4x-1=0\end{matrix}\right.\)

      bởi Nguyễn Thu Cúc 26/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF