OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 19 trang 9 SBT Toán 9 Tập 2

Giải bài 19 tr 9 sách BT Toán lớp 9 Tập 2

Tìm giá trị của \(a\) và \(b\) để hai đường thẳng

\(({d_1})\):  \(\left( {3a - 1} \right)x + 2by = 56\) 

và \(({d_2})\):  \(\displaystyle {1 \over 2} ax - \left( {3b + 2} \right)y = 3\) 

cắt nhau tại điểm \(M(2; -5).\)

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng:

- Hai đường thẳng \(({d_1})\):  \(ax + by = c\) và \(({d_2})\):  \(a'x+b'y = c'\) cắt nhau tại điểm \(M\)  thì tọa độ của \(M\) là nghiệm của hệ phương trình: \(\left\{ {\matrix{
{ax + by = c} \cr 
{a'x+b'y = c'} \cr} } \right.\)

- Cặp số \(({x_0};{y_0})\) là nghiệm của hệ phương trình 

\(\left\{ {\matrix{
{ax + by = c} \cr 
{a'x +b'y = c'} \cr} } \right.\)

\( \Leftrightarrow \left\{ {\matrix{
{a{x_0} + b{y_0} = c} \cr 
{a'{x_0} +b'{y_0}  = c'} \cr} } \right.\)

- Cách giải hệ phương trình bằng phương pháp thế (coi \(a,b\) là ẩn)

+ Bước \(1\): Rút \(a\) hoặc \(b\) từ một phương trình của hệ phương trình, thay vào phương trình còn lại, ta được phương trình mới chỉ còn một ẩn.

+ Bước \(2\): Giải phương trình một ẩn vừa có, rồi từ đó suy ra nghiệm của hệ phương trình đã cho.

Lời giải chi tiết

Hai đường thẳng \(({d_1})\): \(\left( {3a - 1} \right)x + 2by = 56\) và  

\(({d_2})\): \(\displaystyle {1 \over 2}ax - \left( {3b + 2} \right)y = 3\) cắt nhau tại điểm \(M(2; -5)\) nên tọa độ của \(M\) là nghiệm của hệ phương trình:

\(\left\{ {\matrix{
{\left( {3a - 1} \right)x + 2by = 56} \cr 
{\displaystyle {1 \over 2}ax - \left( {3b + 2} \right)y = 3} \cr} } \right.\)

Thay \(x = 2\) và \(y = -5\) vào hệ phương trình ta có:

\(\eqalign{
& \left\{ {\matrix{
{2\left( {3a - 1} \right) + 2b\left( { - 5} \right) = 56} \cr 
{\displaystyle {1 \over 2}a.2 - \left( {3b + 2} \right).\left( { - 5} \right) = 3} \cr} } \right.\cr 
& \Leftrightarrow \left\{ {\matrix{
{6a - 10b = 58} \cr 
{a + 15b +10= 3} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3a - 5b = 29} \cr 
{a + 15b = - 7} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a = - 7 - 15b} \cr 
{3\left( { - 7 - 15b} \right) - 5b = 29} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a = - 7 - 15b} \cr 
{ - 50b = 50} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a = - 7 - 15b} \cr 
{b = - 1} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a = 8} \cr 
{b = - 1} \cr} } \right. \cr} \)

Vậy \(a = 8; b = -1.\) 

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 19 trang 9 SBT Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF