OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Toán 8 Bài 5: Phép cộng các phân thức đại số


Với bài học này, chúng ta sẽ làm quen với Cộng các phân thức đại số. Đây là bài học giúp các em làm quen với việc Cộng các phân thức đại số dựa vào những quy tắc đã học.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 
 
 

Tóm tắt lý thuyết

1.1 Kiến thức cần nhớ

Muốn cộng hai phân thức có còng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức.

Muốn cộng hai phân  thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

VIDEO
YOMEDIA
Trắc nghiệm hay với App HOC247
YOMEDIA

Bài tập minh họa

Bài 1: Cộng các phân thức cùng mẫu:

a.\(\frac{{x - 5}}{5} + \frac{{1 - x}}{5}\)

b.\(\frac{{{x^2} - x}}{{xy}} + \frac{{1 - 4x}}{{xy}}\)

c.\(\frac{{5xy - 3x}}{{2{x^2}{y^3}}} + \frac{{5x - 7xy}}{{2{x^2}{y^3}}}\)

Hướng dẫn

a.

\(\begin{array}{l} \frac{{x - 5}}{5} + \frac{{1 - x}}{5}\\ = \frac{{x - 5 + 1 - x}}{5}\\ = \frac{{ - 4}}{5} \end{array}\)

b.

\(\begin{array}{l} \frac{{{x^2} - x}}{{xy}} + \frac{{1 - 4x}}{{xy}}\\ = \frac{{{x^2} - x + 1 - 4x}}{{xy}}\\ = \frac{{{x^2} - 5x + 1}}{{xy}} \end{array}\)

c.

\(\begin{array}{l} \frac{{5xy - 3x}}{{2{x^2}{y^3}}} + \frac{{5x - 7xy}}{{2{x^2}{y^3}}}\\ = \frac{{5xy - 3x + 5x - 7xy}}{{2{x^2}{y^3}}}\\ = \frac{{2x - 2xy}}{{2{x^2}{y^3}}}\\ = \frac{{2x(1 - y)}}{{2{x^2}{y^3}}}\\ = \frac{{1 - y}}{{x{y^3}}} \end{array}\)

Bài 2: Thực hiện quy đồng mẫu số rồi cộng các phân thức sau:

a. \(\frac{{1 - 2x}}{{2x}} + \frac{{2x}}{{2x - 1}} + \frac{1}{{4{x^2} - 2x}}\)  

b. \(\frac{{{x^2}}}{{{x^2} - 2x}} + \frac{6}{{6 - 3x}} + \frac{1}{{x + 2}}\)  

Hướng dẫn

a.

\(\begin{array}{l} \frac{{1 - 2x}}{{2x}} + \frac{{2x}}{{2x - 1}} + \frac{1}{{4{x^2} - 2x}}\\ = \frac{{\left( {1 - 2x} \right)\left( {2x - 1} \right)}}{{2x\left( {2x - 1} \right)}} + \frac{{2x.2x}}{{2x\left( {2x - 1} \right)}} + \frac{1}{{2x\left( {2x - 1} \right)}}\\ = \frac{{\left( { - 4{x^2} + 4x - 1} \right) + 4{x^2} + 1}}{{2x\left( {2x - 1} \right)}}\\ = \frac{{4x}}{{2x\left( {2x - 1} \right)}}\\ = \frac{2}{{2x - 1}} \end{array}\)

b.

\(\begin{array}{l} \frac{{{x^2}}}{{{x^2} - 2x}} + \frac{6}{{6 - 3x}} + \frac{1}{{x + 2}}\\ = \frac{{3{x^2}\left( {x + 2} \right)}}{{3x\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{ - 6x\left( {x + 2} \right)}}{{3x\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{3x\left( {x - 2} \right)}}{{3x\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{3{x^3} + 6{x^2} - 6{x^2} - 12x + 3{x^2} - 6x}}{{3x\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{3{x^3} + 3{x^2} - 18x}}{{3x\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{3x\left( {{x^2} + x - 6} \right)}}{{3x\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{{x^2} - 2x + 3x - 6}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{\left( {x - 2} \right)\left( {x + 3} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{x + 3}}{{x + 2}} \end{array}\)

Bài 3: Tính A:

\(A = \frac{{2x}}{{{x^2} + 2xy}} + \frac{y}{{xy - 2{y^2}}} + \frac{4}{{{x^2} - 4{y^2}}}\)

Hướng dẫn

Ta có:

\(\begin{array}{l} A = \frac{{2x}}{{{x^2} + 2xy}} + \frac{y}{{xy - 2{y^2}}} + \frac{4}{{{x^2} - 4{y^2}}}\\ = \frac{{2xy\left( {x - 2y} \right)}}{{xy\left( {x - 2y} \right)\left( {x + 2y} \right)}} + \frac{{xy\left( {x + 2y} \right)}}{{xy\left( {x - 2y} \right)\left( {x + 2y} \right)}} + \frac{{4y}}{{xy\left( {x - 2y} \right)\left( {x + 2y} \right)}}\\ = \frac{{2xy\left( {x - 2y} \right) + xy\left( {x + 2y} \right) + 4xy}}{{xy\left( {x - 2y} \right)\left( {x + 2y} \right)}}\\ = \frac{{\left( {2x - 4y + x + 2y + 4} \right)}}{{\left( {x - 2y} \right)\left( {x + 2y} \right)}}\\ = \frac{{3x - 2y + 4}}{{\left( {x - 2y} \right)\left( {x + 2y} \right)}}\\ = \frac{{3x - 2y + 4}}{{\left( {x - 2y} \right)\left( {x + 2y} \right)}} \end{array}\)

ADMICRO

3. Luyện tập Bài 5 Toán 8 tập 1

Qua bài giảng Cộng các phân thức đại số này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như : 

  • Xác định được mẫu thức chung
  • Thực hiện được cộng các phân thức cùng mẫu và khác mẫu thức
  • Vận dụng được kiến thức đã học để giải các bài toán liên quan

3.1 Trắc nghiệm về Cộng các phân thức đại số

Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Toán 8 Bài 5 cực hay có đáp án và lời giải chi tiết. 

Câu 3-5: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé! 

3.2. Bài tập SGK về Cộng các phân thức đại số

Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 8 Bài 5 để giúp các em nắm vững bài học và các phương pháp giải bài tập.

Bài tập 21 trang 46 SGK Toán 8 Tập 1

Bài tập 22 trang 46 SGK Toán 8 Tập 1

Bài tập 23 trang 46 SGK Toán 8 Tập 1

Bài tập 24 trang 46 SGK Toán 8 Tập 1

Bài tập 17 trang 28 SBT Toán 8 Tập 1

Bài tập 18 trang 28 SBT Toán 8 Tập 1

Bài tập 19 trang 29 SBT Toán 8 Tập 1

Bài tập 20 trang 29 SBT Toán 8 Tập 1

Bài tập 21 trang 29 SBT Toán 8 Tập 1

Bài tập 22 trang 29 SBT Toán 8 Tập 1

Bài tập 23 trang 29 SBT Toán 8 Tập 1

Bài tập 5.1 trang 30 SBT Toán 8 Tập 1

Bài tập 5.2 trang 30 SBT Toán 8 Tập 1

4. Hỏi đáp Bài 5 Chương 2 Đại số 8 tập 1

Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!

Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!

-- Mod Toán Học 8 HỌC247

NONE
OFF