OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 4 trang 107 SGK Toán 7 Cánh diều tập 2 - CD

Giải bài 4 trang 107 SGK Toán 7 Cánh diều tập 2

Cho tam giác ABC có hai đường trung tuyến AM và BN cắt nhau tại G. Gọi H là hình chiếu của A lên đường thẳng BC. Giả sử H là trung điểm của đoạn thẳng BM. Chứng minh:

a) \(\Delta AHB = \Delta AHM\);     

b) \(AG = \dfrac{2}{3}AB\).

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 4

Phương pháp giải

a) Chứng minh \(\Delta AHB = \Delta AHM\)theo trường hợp c.g.c.

b) Dựa vào kết quả chứng minh phần a) và tính chất ba đường trung tuyến trong tam giác để chứng minh.

Lời giải chi tiết

a) Xét tam giác AHB và tam giác AHM có:

     AH chung;

     \(\widehat {AHB} = \widehat {AHM}\)(là hình chiếu của lên BC nên \(AH \bot BC\));

     HB = HM (H là trung điểm của BM).

Vậy \(\Delta AHB = \Delta AHM\)(c.g.c).

b) \(\Delta AHB = \Delta AHM\)nên AB = AM ( 2 cạnh tương ứng).

G là giao điểm của hai đường trung tuyến AM và BN nên G là trọng tâm tam giác ABC. Nên: \(AG = \dfrac{2}{3}AM\).

Mà AB = AM suy ra: \(AG = \dfrac{2}{3}AB\).

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 4 trang 107 SGK Toán 7 Cánh diều tập 2 - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF