OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 15 trang 38 SBT Toán 7 Tập 2

Giải bài 15 tr 38 sách BT Toán lớp 7 Tập 2

Cho tam giác \(ABC\) vuông tại \(A, M \) là trung điểm của \(AC.\) Gọi \(E\) và \(F\) là chân các đường vuông góc kẻ từ \(A\) và \(C\) đến đường thẳng \(BM.\) Chứng minh rằng \(\displaystyle AB < {{BE + BF} \over 2}.\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

+) Sử dụng: Trong các đường xiên và đường vuông góc kẻ từ một điểm ở ngoài một đường thẳng đến đường thẳng đó, đường vuông góc là đường ngắn nhất.

+) Chứng minh hai tam giác \(AEM\) và \(CFM\) bằng nhau từ đó suy ra hai cạnh tương ứng bằng nhau.

Từ đó lập luận để có điều cần chứng minh.

Lời giải chi tiết

Trong \(∆ABM\) có \(\widehat {BAM} = 90^\circ \) nên  \(∆ABM\) vuông tại A.

\( \Rightarrow AB < BM\) (trong tam giác vuông cạnh huyền lớn nhất)

Mà \(BM = BE + EM = BF – MF\)

Do đó: \(AB <  BE  + EM\)  (1)

Và \( AB <  BF – FM\) (2)

Suy ra:  \(AB  + AB  <  BE +  ME +  BF  - MF \)  (3)

Xét hai tam giác vuông \(AEM\) và \(CFM:\)

+) \(\widehat {A{\rm{E}}M} = \widehat {CFM} = 90^\circ \)

+) \(AM = CM\) (gt)

+) \(\widehat {AM{\rm{E}}} = \widehat {CMF}\) (đối đỉnh)

Suy ra: \(∆AEM = ∆CFM\) (cạnh huyền - góc nhọn)

\( \Rightarrow ME = MF\)   (hai cạnh tương ứng)  (4)

Từ (3) và (4) suy ra   :  \(AB  + AB <  BE + BF\)

\( \Rightarrow 2{\rm{A}}B < BE + BF \)\(\displaystyle \Rightarrow AB < {{BE + BF} \over 2}\)

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 15 trang 38 SBT Toán 7 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF