OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 26 trang 85 SGK Toán 10 NC

Bài tập 26 trang 85 SGK Toán 10 NC

Giải và biện luận phương trình sau (m và a là những tham số)

a) \(\left( {2x + m - 4} \right)\left( {2mx - x + m} \right) = 0\)

b) \(\left| {mx + 2x - 1} \right| = \left| x \right|\)

c) \(\left( {mx + 1} \right)\sqrt {x - 1}  = 0\)

d) \(\frac{{2a - 1}}{{x - 2}} = a - 2\)

e) \(\frac{{\left( {m + 1} \right)x + m - 2}}{{x + 3}} = m\)

f) \(\left| {\frac{{ax + 1}}{{x - 1}}} \right| = a\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

a) Ta có \(\left( {2x + m - 4} \right)\left( {2mx - x + m} \right) = 0\)

\(\begin{array}{l}
 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{2x + m - 4 = 0}\\
{2mx - x + m = 0}
\end{array}} \right.\\
 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x = \frac{{4 - m}}{2}}\\
{\left( {2m - 1} \right)x =  - m}
\end{array}} \right.
\end{array}\)

+ Với \(m = \frac{1}{2}\) phương trình có nghiệm \(x = \frac{{4 - m}}{2} = \frac{7}{4}\)

+ Với \(m \ne \frac{1}{2}\) phương trình có 2 nghiệm: \(x = \frac{{4 - m}}{2};x = \frac{m}{{1 - 2m}}\)

b) Ta có \(\left| {mx + 2x - 1} \right| = \left| x \right|\)

\(\begin{array}{l}
 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{mx + 2x - 1 = x}\\
{mx + 2x - 1 =  - x}
\end{array}} \right.\\
 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{\left( {m + 1} \right)x = 1}\\
{\left( {m + 3} \right)x = 1}
\end{array}} \right.
\end{array}\)

+ Với m = - 1 phương trình có nghiệm \(x = \frac{1}{2}\)

+ Với m = - 3 phương trình có nghiệm \(x = -\frac{1}{2}\)

+ Với m ≠ - 1 và m ≠ - 3 thì phương trình có 2 nghiệm: 

\(x = \frac{1}{{m + 1}};x = \frac{1}{{m + 3}}\)

c) Điều kiện: \(x \ge 1\)

\(\begin{array}{l}
\left( {mx + 1} \right)\sqrt {x - 1}  = 0\\
 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x = 1}\\
{mx + 1 = 0}
\end{array}} \right.{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 1 \right)
\end{array}\)

+ Với m = 0, phương trình có nghiệm x = 1

+ Với m ≠ 0, \(\left( 1 \right) \Leftrightarrow x =  - \frac{1}{m}\)

Kiểm tra điều kiện:

\(\begin{array}{*{20}{l}}
\begin{array}{l}
 - \frac{1}{m} \ge 1 \Leftrightarrow  - \frac{1}{m} - 1 \ge 0\\
 \Leftrightarrow \frac{{ - m - 1}}{m} \ge 0
\end{array}\\
{ \Leftrightarrow \frac{{m + 1}}{m} \le 0 \Leftrightarrow  - 1 \le m < 0}
\end{array}\)

d) Điều kiện: \(x \ne 2\)

Ta có

\(\begin{array}{*{20}{l}}
\begin{array}{l}
\frac{{2a - 1}}{{x - 2}} = a - 2\\
 \Rightarrow 2a - 1 = \left( {a - 2} \right)\left( {x - 2} \right)
\end{array}\\
{ \Leftrightarrow \left( {a - 2} \right)x = 4a - 5\,\,\left( 1 \right)}
\end{array}\)

+ Với \(a=2\) thì \(S = \emptyset \)

+ Với \(a \ne 2\) thì  \(\left( 1 \right) \Leftrightarrow x = \frac{{4a - 5}}{{a - 2}}\)

Kiểm tra điều kiện:

\(\begin{array}{l}
x \ne 2 \Leftrightarrow \frac{{4a - 5}}{{a - 2}} \ne 2\\
 \Leftrightarrow 4a - 5 \ne 2a - 4\\
 \Leftrightarrow a \ne \frac{1}{2}
\end{array}\)

Vậy:

+ Với \(a=2\) hoặc \(a = \frac{1}{2}:S = \emptyset \)

+ Với \(a \ne 2\) hoặc \(a \ne \frac{1}{2}:S = \left\{ {\frac{{4a - 5}}{{a - 2}}} \right\}\)

e) Điều kiện: \(x \ne  - 3\)

Phương trình đã cho tương đương với:

\(\left( {m + 1} \right)x + m - 2 = m\left( {x + 3} \right) \)

\(\Leftrightarrow x = 2m + 2\)

x = 2m + 2 là nghiệm của phương trình 

\( \Leftrightarrow 2m + 2 \ne  - 3 \Leftrightarrow m \ne  - \frac{5}{2}\)

Vậy 

+ Với \(m \ne  - \frac{5}{2}\) thì phương trình có nghiệm duy nhất x = 2m + 2

+ Với \(m =  - \frac{5}{2}\) thì phương trình vô nghiệm 

f) Rõ ràng \(a < 0\) thì phương trình vô nghiệm

Với \(a \ge 0\). Điều kiện \(x \ne 1\)

Ta có:

\(\begin{array}{*{20}{l}}
\begin{array}{l}
\left| {\frac{{ax + 1}}{{x - 1}}} \right| = a \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{\frac{{ax + 1}}{{x - 1}} = a}\\
{\frac{{ax + 1}}{{x - 1}} =  - a}
\end{array}} \right.\\
 \Rightarrow \left[ {\begin{array}{*{20}{l}}
{ax + 1 = ax - a}\\
{ax + 1 =  - ax + a}
\end{array}} \right.
\end{array}\\
{ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{a =  - 1{\mkern 1mu} {\mkern 1mu} \left( l \right)}\\
{2ax = a - 1}
\end{array}} \right.}
\end{array}\)

Vậy 

+ Với \(a=0\): \(S = \emptyset \)

+ Với \(a > 0:S = \left\{ {\frac{{a - 1}}{{2a}}} \right\}\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 26 trang 85 SGK Toán 10 NC HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Nguyễn Trường Giang
    Giải giúp mình mấy câu này với.Khó quá

    Theo dõi (0) 2 Trả lời
  • Dololo Trần

    Theo dõi (1) 4 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Khánh Linh

    Giải phương trình căn ((x+1)(2-x))=1+2x-2x^2

    Theo dõi (0) 2 Trả lời
  • Trần Trọng

    Giải phương Trình 

    a)x+\sqrt{17-x^{2}}+x \sqrt{17-x^2}=9

    b)x^{3}+1=2\sqrt[3]{2x-1}

    Theo dõi (0) 1 Trả lời
  • ADMICRO
    Co Nan

    giải hệ pt: \(\left\{{}\begin{matrix}3x+y=\dfrac{1}{x^2}\\3y+x=\dfrac{1}{y^2}\end{matrix}\right.\)

    Theo dõi (0) 1 Trả lời
NONE
OFF