OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Tính BCD, biết P = 60 độ, AQC = 80 độ

Từ điểm P nằm ngoài đường tròn O , kẻ hai cát tuyến PAB và PCD ( A nằm giữa P và B , C nằm giữa P và D ) các đường thẳng Ad và BC cắt nhau tại Q

a, Biết P = 60 độ , AQC = 80 độ . Tính BCD

b, Chứng minh : PA.PB=PC.PD

  bởi Mai Đào 30/01/2019
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Lời giải:

    a)

    Ta có:

    \(\widehat{P}=\frac{1}{2}(\text{cung BD-cung AC})=60^0(1)\)

    \(\widehat{AQC}=\frac{1}{2}(\text{cung AC+cung BD)}=80^0(2)\)

    Lấy \((1)+(2)\Rightarrow \text{cung BD}=60^0+80^0=140^0\)

    Do đó \(\widehat{BCD}=\frac{1}{2}\text{cung BD}=70^0\)

    b) Vì \(A,B,C,D\in (O)\) nên $ABCD$ là tứ giác nội tiếp.

    \(\Rightarrow \widehat{PAC}=\widehat{PDB}\) (theo tính chất tgnt)

    Xét tam giác $PAC$ và $PDB$ có:

    \(\left\{\begin{matrix} \text{Chung}- \widehat{P}\\ \widehat{PAC}=\widehat{PDB}\end{matrix}\right.\Rightarrow \triangle PAC\sim \triangle PDB(g.g)\)

    \(\Rightarrow \frac{PA}{PD}=\frac{PC}{PB}\Rightarrow PA.PB=PC.PD\) (đpcm)

      bởi Lê Minh Hiếu 30/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF