OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Tìm m để phương trình có hai nghiệm x_1/x_2+x_2/x=10/3

bài 1 : cho phương trình : \(x^2+4x+m+1=0\)

tìm m để phương trình có hai nghiệm:

\(\dfrac{x1}{x2}+\dfrac{x2}{x}=\dfrac{10}{3}\)

bài 2 : cho phương trình : \(\left(m+1\right)x^2-2\left(m-1\right)x\)

tìm m để phương trình có hai nghiệm

\(\dfrac{1}{x1}+\dfrac{1}{x2}=\dfrac{7}{4}\)

  bởi Bin Nguyễn 25/01/2019
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Bài 1:

    Trước tiên để pt có hai nghiệm thì:

    \(\Delta'=2^2-(m+1)>0\Leftrightarrow m<3\)

    Áp dụng định lý Viete cho pt bậc 2 là: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=m+1\end{matrix}\right.\)

    Điều kiện: $x_1,x_2\neq 0$ \(\Leftrightarrow x_1x_2=m+1\neq 0\Leftrightarrow m\neq -1\)

    Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{10}{3}\)

    \(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=\frac{10}{3}\Leftrightarrow \frac{x1^2+x_2^2+2x_1x_2}{x_1x_2}=\frac{16}{3}\)

    \(\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=\frac{16}{3}\Leftrightarrow \frac{(-4)^2}{m+1}=\frac{16}{3}\)

    \(\Leftrightarrow m+1=3\Leftrightarrow m=2\) (thỏa mãn)

    Vậy $m=2$

     Bài 2 bạn xem lại đề bài.

     

      bởi Đầu Gỗ 25/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF