OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Qua điểm M nằm trong đường tròn (O) kẻ hai dây AB và CD vuông góc với nhau. Chứng minh rằng: Đường cao MH của tam giác AMD đi qua trung điểm I của BC.

  bởi Chai Chai 21/01/2021
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Giả sử MH cắt BC tại I. Ta cần chứng minh I là trung điểm của BC.

    Ta có ∠ADC = ∠ABC (góc nội tiếp cùng chắn cung AC) (1)

    Lại có ∠AMH = ∠ADM (cùng phụ với góc ∠MAD)

    Mà ∠AMH = ∠IMB (đối đỉnh)

    => ∠ADM = ∠IMB (2)

    Từ (1) và (2) suy ra: ∠IMB = ∠IBM => ΔIMB cân tại I.

    Do đó IM = IB.

    Chứng minh tương tự ta có: IM = IC

    Suy ra IB = IC = IM hay I là trung điểm của BC.

      bởi Hồng Hạnh 22/01/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF