OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh a/b+b/a>=2

a , cho a,b là 2 số thực dương tùy ý . Cmr \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

b. Cho 3 số thực dương x,y,z thỏa mãn : x+y+z=1

Tìm giá trị lón nhất của biểu thức : P=\(\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)

  bởi thu thủy 04/01/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • b)Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ta có:

    \(\dfrac{x}{x+1}=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\)

    Tương tự cho 2 BĐT còn lại ta có:

    \(\dfrac{y}{y+1}\le\dfrac{1}{4}\left(\dfrac{y}{x+y}+\dfrac{y}{y+z}\right);\dfrac{z}{z+1}\le\dfrac{1}{4}\left(\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)\)

    Cộng theo vế 3 BĐT trên ta có:

    \(P\le\dfrac{1}{4}\left(\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{z+x}{z+x}\right)=\dfrac{1}{4}\cdot3=\dfrac{3}{4}\)

    Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)

      bởi Phan Thu Ngân 04/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF