OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho tam giác ABC vuông tại A, BC = a, đường cao AH.

a, Chứng minh rằng: AH=a sinBcosB; BH = a cos2B ; CH = a sin2 B

b, Suy ra AB2 = BC.BH ; AH2 = BH.HC

  bởi Sam sung 20/01/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • a, Chứng minh:

    Xét tam giác vuông ABH, ta có:

    AH = sinB.AB (1)

    Xét tam giác vuông ABC, ta có:

    AB = BC.cos B = acos B (2)

    Từ (1) và (2) ta có:

    AH = a sin B cos B

    Tương tự ta có:

    + Xét tam giác vuông ABH: BH = AB.cos B

    Xét tam giác vuông ABC: AB = BC.cos B = acos B => BH = a cos2B

    + Xét tam giác vuông ACH: CH = AC.cos C = AC.sin B

    Tam giác vuông ABC: AC=BC.sin B=a.sin B => CH = a sin2 B

    b, AB2 = a2 cos2B

    BC.BH = a.a.cos2B = a2cos2B

    => AB2 = BC.BH

    AH2 = a2sin2cos2B

    => AH2 = BH.HC

      bởi Lê Gia Bảo 21/01/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF