OPTADS360
NONE
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Từ điểm \(A\left( {6;2} \right)\) ta kẻ hai tiếp tuyến với đường tròn \(\left( C \right):{x^2} + {y^2} = 4,\) tiếp xúc với \(\left( C \right)\) lần lượt tại \(P\) và \(Q.\) Tâm \(I\) của đường tròn ngoại tiếp tam giác \(APQ\) có tọa độ là:

    • A. 
      \(\left( {2;0} \right)\)
    • B. 
      \(\left( {1;1} \right)\)
    • C. 
      \(\left( {3;1} \right)\)
    • D. 
      \(\left( {4;1} \right)\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Đường tròn \(\left( C \right):\,\,\,{x^2} + {y^2} = 4\) có tâm \(O\left( {0;0} \right)\) và bán kính \(R = 2.\)

    Ta có: \(A\left( {6;\,\,2} \right) \Rightarrow \overrightarrow {OA}  = \left( {6;\,\,2} \right) \)

    \(\Rightarrow OA = 2\sqrt {10}  > R \Rightarrow \) \(A\left( {6;2} \right)\) nằm ngoài đường tròn.

    Lại có: \(I\) là tâm đường tròn ngoại tiếp \(\Delta APQ\) với \(P,\,Q\) là hai tiếp điểm của hai tiếp tuyến kẻ từ \(A\) đến đường tròn \(\left( C \right).\)

    Khi đó ta chứng minh được tứ giác \(OPAQ\) là tứ giác nội tiếp.

    Lại có: \(\angle OQA = \angle OPA \Rightarrow \) Tâm \(I\) của đường tròn ngoại tiếp tứ giác \(OPAQ\) hay đường tròn ngoại tiếp \(\Delta APQ\) là trung điểm \(OA \Rightarrow \)\(I\left( {3;1} \right)\)

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF