OPTADS360
NONE
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Biểu thức rút gọn của: \(A = {\cos ^2}a + {\cos ^2}\left( {a + b} \right) \)\(- 2\cos a.\cos b.\cos \left( {a + b} \right)\) bằng:

    • A. 
      \({\cos ^2}b\)
    • B. 
      \({\sin ^2}a\)
    • C. 
      \({\sin ^2}b\)
    • D. 
      \({\cos ^2}a\)

    Lời giải tham khảo:

    Đáp án đúng: C

    \(\begin{array}{l}A = {\cos ^2}a + {\cos ^2}\left( {a + b} \right)\\ - 2\cos a.\cos b.\cos \left( {a + b} \right)\\ = {\cos ^2}a + {\cos ^2}\left( {a + b} \right)\\ - 2.\frac{1}{2}\left[ {\cos \left( {a + b} \right) + \cos \left( {a - b} \right)} \right].\cos \left( {a + b} \right)\\ = {\cos ^2}a + {\cos ^2}\left( {a + b} \right)\\ - {\cos ^2}\left( {a + b} \right) - \cos \left( {a - b} \right).\cos \left( {a + b} \right)\\ = {\cos ^2}a - \cos \left( {a - b} \right).\cos \left( {a + b} \right)\\ = \frac{{1 + \cos 2a}}{2} - \frac{1}{2}\left( {\cos 2a + \cos 2b} \right)\\ = \frac{1}{2} - \frac{{\cos 2b}}{2} = {\sin ^2}b.\end{array}\)

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF