OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Tìm giá trị thực của tham số \(m\) để phương trình \(\left| x \right| + 1 = {x^2} + m\) có nghiệm duy nhất.

    • A. 
      \(m = 0.\)
    • B. 
      \(m = 1.\)
    • C. 
      \(m =  - 1.\)
    • D. 
      Không có \(m.\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Phương trình \( \Leftrightarrow {\left| x \right|^2} - \left| x \right| + \left( {m - 1} \right) = 0\)

    Đặt \(t = \left| x \right|,\;t \ge 0\), phương trình trở thành \({t^2} - t + m - 1 = 0\;\;\;\;\left(  *  \right)\)

    Phương trình đã cho có nghiệm duy nhất \( \Leftrightarrow \) \(\left(  *  \right)\) có nghiệm duy nhất \(t = 0\).

    Với \(t = 0\) là nghiệm của phương trình \(\left(  *  \right) \Rightarrow {0^2} - 0 + m - 1 = 0 \Leftrightarrow m = 1\).

    Thử lại, thay \(m = 1\) vào phương trình \(\left(  *  \right)\), thấy phương trình có 2 nghiệm \(t = 0\) và \(t = 1\): Không thỏa mãn. 

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

AMBIENT-ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF