OPTADS360
AANETWORK
AMBIENT
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho tam diện vuông \(O.ABC\) có bán kính mặt cầu ngoại tiếp và nội tiếp lần lượt là \(R\) và \(r.\) Khi đó tỉ số \(\frac{R}{r}\) đạt giá trị nhỏ nhất là \(\frac{x+\sqrt{y}}{2}.\) Tính \(P=x+y.\)

    • A. 
      30
    • B. 
      6
    • C. 
      60
    • D. 
      27

    Lời giải tham khảo:

    Đáp án đúng: A

    Đặt \(OA=a,OB=b,OC=c.\)

    Gọi \(M\) là trung điểm của \(BC,\) dựng trục đường tròn \(\Delta \) ngoại tiếp tam giác \(OBC,\) trên mặt phẳng \(\left( OAM \right),\) kẻ đường trung trực của đoạn \(OA\) cắt \(\Delta \) tại \(I\) là tâm mặt cầu ngoại tiếp hình chóp \(O.ABC.\)

    +) \(OM=\frac{1}{2}BC=\frac{1}{2}\sqrt{{{b}^{2}}+{{c}^{2}}},R=\sqrt{M{{I}^{2}}+O{{M}^{2}}}=\frac{1}{2}\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}.\)

    +) Gọi \(H\) là chân đường cao hạ từ đỉnh \(A\) của tam giác \(ABC,\) suy ra:

    \(\left\{ \begin{align} & BC\bot AH \\ & BC\bot AO \\ \end{align} \right.\Rightarrow BC\bot \left( OAH \right)\Rightarrow BC\bot OH.\)

    \(\frac{1}{O{{H}^{2}}}=\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}\Rightarrow OH=\frac{bc}{\sqrt{{{b}^{2}}+{{c}^{2}}}}\Rightarrow AH=\sqrt{O{{A}^{2}}+O{{H}^{2}}}=\sqrt{{{a}^{2}}+\frac{{{b}^{2}}{{c}^{2}}}{{{b}^{2}}+{{c}^{2}}}}=\sqrt{\frac{{{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}}{\sqrt{{{b}^{2}}+{{c}^{2}}}}}\)

    Suy ra \({{S}_{\Delta ABC}}=\frac{1}{2}AH.BC=\frac{1}{2}\frac{\sqrt{{{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}}}{\sqrt{{{b}^{2}}+{{c}^{2}}}}.\sqrt{{{b}^{2}}+{{c}^{2}}}=\frac{1}{2}\sqrt{{{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}}.\)

    +) Gọi J là tâm mặt cầu nội tiếp hình chóp \(O.ABC.\)

    Khi đó: \(d\left( J;\left( OAB \right) \right)=d\left( J;\left( OBC \right) \right)=d\left( J;\left( OAC \right) \right)=d\left( J;\left( ABC \right) \right)=r.\)

    \({{V}_{O.ABC}}={{V}_{J.ABC}}+{{V}_{J.OBC}}+{{V}_{J.AOC}}+{{V}_{J.ABO}}\Leftrightarrow \frac{1}{6}abc=\frac{1}{3}r\left( {{S}_{\Delta ABC}}+{{S}_{\Delta OBC}}+{{S}_{\Delta AOC}}+{{S}_{\Delta ABO}} \right)\)

          \(\Leftrightarrow \frac{1}{2}abc=r\left( \frac{1}{2}\sqrt{{{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}}+\frac{1}{2}\left( ab+bc+ca \right) \right).\)

          \(\Leftrightarrow \frac{1}{r}=\frac{1}{abc}\left( \sqrt{{{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}}+ab+bc+ca \right).\)

    Suy ra: \(\frac{R}{r}=\frac{1}{2}.\frac{1}{abc}.\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\left( \sqrt{{{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}}+ab+bc+ca \right)\)

                     \(\ge \frac{1}{2}.\frac{1}{abc}.\sqrt{3\sqrt[3]{{{a}^{2}}{{b}^{2}}{{c}^{2}}}}\left( \sqrt{3\sqrt[3]{{{a}^{2}}{{b}^{2}}.{{a}^{2}}{{c}^{2}}.{{b}^{2}}{{c}^{2}}}}+3\sqrt[3]{ab.bc.ca} \right)\)

                     \(=\frac{1}{2}.\frac{1}{abc}.\sqrt{3}.\sqrt[3]{abc}\left( \sqrt{3}.\sqrt[3]{{{a}^{2}}{{b}^{2}}{{c}^{2}}}+3\sqrt[3]{{{a}^{2}}{{b}^{2}}{{c}^{2}}} \right)=\frac{3+3\sqrt{3}}{2}=\frac{3+\sqrt{27}}{2}.\)

    Vậy \(P=a+b=30.\) Dấu “=” xảy ra khi \(a=b=c\).

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF