OPTADS360
AANETWORK
AMBIENT
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho \(a\) và \(b\) là các số thực dương khác 1. Biết rằng bất kỳ đường thẳng nào song song với trục tung mà cắt các đồ thị \(y={{\log }_{a}}x,y={{\log }_{b}}x\) và trục hoành lần lượt tại \(A,B\) và \(H\) phân biệt ta đều có \(3HA=4HB\) (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?

    • A. 
      \(4a=3b.\)
    • B. 
      \({{a}^{3}}{{b}^{4}}=1.\)
    • C. 
      \(3a=4b.\)
    • D. 
      \({{a}^{4}}{{b}^{3}}=1.\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có: Gọi \(H\left( {{x}_{0}};0 \right).\) Khi đó \(A\left( {{x}_{0}};{{\log }_{a}}{{x}_{0}} \right);B\left( {{x}_{0}};{{\log }_{b}}{{x}_{0}} \right)\)

    \(AH=\left| {{\log }_{a}}{{x}_{0}} \right|;BH=\left| {{\log }_{b}}{{x}_{0}} \right|\)

    Do \(3HA=4HB\Leftrightarrow 3\left| {{\log }_{a}}{{x}_{0}} \right|=4\left| {{\log }_{b}}{{x}_{0}} \right|\)

    Dựa vào đồ thị ta thấy: \(3\left| {{\log }_{a}}{{x}_{0}} \right|=4\left| {{\log }_{b}}{{x}_{0}} \right|\Leftrightarrow 3{{\log }_{a}}{{x}_{0}}=-4{{\log }_{b}}{{x}_{0}}\)

    Đặt \(3{{\log }_{a}}{{x}_{0}}=-4{{\log }_{b}}{{x}_{0}}=t.\) Ta có

    \(3{\log _a}{x_0} = - 4{\log _b}{x_0} = t \Leftrightarrow \left\{ \begin{array}{l} {\log _a}{x_0} = \frac{t}{3}\\ {\log _b}{x_0} = - \frac{t}{4} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {a^{\frac{t}{3}}} = {x_0}\\ {b^{ - \frac{t}{4}}} = {x_0} \end{array} \right.\)

    \(\Leftrightarrow {{a}^{\frac{t}{3}}}={{b}^{-\frac{t}{4}}}\Leftrightarrow {{a}^{\frac{t}{3}}}=\frac{1}{{{b}^{\frac{t}{4}}}}\Leftrightarrow {{a}^{\frac{t}{3}}}.{{b}^{\frac{t}{4}}}=1\Leftrightarrow {{a}^{4}}.{{b}^{3}}=1.\)

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF