OPTADS360
AANETWORK
AMBIENT
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hình chóp \(S.ABC\) có \(SA=x,BC=y,AB=AC=SB=SC=1.\) Thể tích khối chóp \(S.ABC\) lớn nhất khi tổng \(x+y\) bằng

    • A. 
      \(\frac{2}{\sqrt{3}}.\)
    • B. 
      \(4\sqrt{3}.\)
    • C. 
      \(\frac{4}{\sqrt{3}}.\)
    • D. 
      \(\sqrt{3}.\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Gọi \(I,J\) lần lượt là trung điểm \(BC,SA\) nên \(\left\{ \begin{array}{l} BC \bot AI\\ BC \bot SI \end{array} \right. \Rightarrow BC \bot \left( {SAI} \right).\)

    Hai tam giác cân \(ABC,SBC\) bằng nhau nên \(IA=IS\) suy ra \(\Delta ISA\) cân tại \(I.\)

    Trong \(\Delta SBI\) vuông tại \(I\) ta có \(SI=\sqrt{S{{B}^{2}}-B{{I}^{2}}}=\sqrt{{{1}^{2}}-\frac{{{y}^{2}}}{4}}.\)

    Trong \(\Delta SAI\) cân tại \(I\) ta có \(IJ=\sqrt{S{{I}^{2}}-S{{J}^{2}}}=\sqrt{{{1}^{2}}-\frac{{{y}^{2}}}{4}-\frac{{{x}^{2}}}{4}}.\)

    Khi đó thể tích khối chóp \(S.ABC\) là \(V=\frac{1}{3}.BC.{{S}_{SAI}}=\frac{1}{6}.BC.SA.IJ=\frac{1}{6}xy\sqrt{1-\frac{{{y}^{2}}+{{x}^{4}}}{4}}\)

    Ta có \({{x}^{2}}+{{y}^{2}}\ge 2xy,\forall x,y\in \mathbb{R}\Rightarrow V\le \frac{1}{6}xy\sqrt{1-\frac{xy}{2}}\)

    \(=\frac{1}{12}\sqrt{xy}.\sqrt{xy}.\sqrt{4-2xy}\le \frac{1}{12}{{\left( \frac{xy+xy+4-2xy}{3} \right)}^{\frac{3}{2}}}\le \frac{2\sqrt{3}}{27}\)

    Dấy “=” xảy ra tại \(x=y=\frac{2}{\sqrt{3}}\) suy ra \(x+y=\frac{4}{\sqrt{3}}.\)

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF