-
Câu hỏi:
Biết rằng \(\int\limits_1^5 {\frac{3}{{{x^2} + 3x}}dx} = a\ln 5 + b\ln 2, \left( {a,b \in Z } \right).\) Mệnh đề nào sau đây đúng?
-
A.
a + 2b = 0
-
B.
a + b = 0
-
C.
a - b = 0
-
D.
2a - b = 0
Lời giải tham khảo:
Đáp án đúng: B
\(\begin{array}{l} \int\limits_1^5 {\frac{3}{{{x^2} + 3x}}dx} = \int\limits_1^5 {\frac{3}{{x(x + 3)}}dx} = \int\limits_1^5 {\left( {\frac{1}{x} - \frac{1}{{x + 3}}} \right)dx} \\ = \left. {\left( {\ln \left| x \right|} \right)} \right|_1^5 - \left. {\left( {\ln \left| {x + 3} \right|} \right)} \right|_1^5 = \ln 5 - \ln 2\\ \Rightarrow a + b = 0. \end{array}\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Hàm số nào sau đây không phải làm nguyên hàm của hàm số f(x) = 2sin 2x
- Biết \(F\left( x \right) = \left( {ax + b} \right).{e^x}\) là nguyên hàm của hàm số \(y = \left( {2x + 3} \right).{e^x}.\) Tính tổng a + b.
- Trong các tích phân sau, tích phân nào không có cùng giá trị với \(I = \int\limits_1^2 {{x^3}\sqrt {{x^2} - 1} dx} .\)
- Tính diện tích S của hình phẳng được giới hạn bởi các đồ thị hàm số \(y=x^2\) và \(y=x\).
- Biết rằng \(\int\limits_1^5 {\dfrac{3}{{{x^2} + 3x}}dx} = a\ln 5 + b\ln 2, \left( {a,b \in Z } \right).\) Mệnh đề nào sau đây đúng?
- Có bao nhiêu số nguyên dương n sao cho biểu thức \(P = n\ln n - \int_1^n {\ln xdx}\) có giá trị không vượt quá 2017.
- Tính thể tích V của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y = 0,\,y = x\sqrt {\ln (x + 1)}\) và x = 1 xung quanh trục Ox.
- Cho \(I = \int\limits_0^1 {f\left( {\frac{{\sqrt x }}{{\sqrt x + \sqrt {1 - x} }}} \right)dx} = 10\). Tính \(J = \int\limits_0^1 {f\left( {\frac{{\sqrt {1 - x} }}{{\sqrt x + \sqrt {1 - x} }}} \right)dx}.\)
- Cho hàm số \(f(x) = \frac{a}{{{{(x + 1)}^3}}} + bx{e^x}.\) Tìm a và b biết rằng \(f'(x) = - 22\) và \(\int\limits_0^1 {f(x)dx = 5.}\)
- Từ khúc gỗ hình trụ có bán kính 30cm, người ta cắt khúc gỗ bởi một mặt phẳng đi qua đường kính và nghiêng với đáy một góc 45^0 để lấy một hình nêm như hình vẽ