OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Bất phương trình \(\frac{{2{x^2} - x - 1}}{{\left| {x + 1} \right| - 2x}} \le - 2{x^2} + x + 1\) 

    có bao nhiêu nghiệm nguyên?

    • A. 
      1
    • B. 
      2
    • C. 
      3
    • D. 
      Nhiều hơn 3 nhưng hữu hạn.

    Lời giải tham khảo:

    Đáp án đúng: B

    \(\begin{array}{l}
    \frac{{2{x^2} - x - 1}}{{\left| {x + 1} \right| - 2x}} \le  - 2{x^2} + x + 1\\
     \Leftrightarrow \left[ \begin{array}{l}
    \frac{{2{x^2} - x - 1}}{{x + 1 - 2x}} \le  - 2{x^2} + x + 1\\
    \frac{{2{x^2} - x - 1}}{{ - \left( {x + 1} \right) - 2x}} \le  - 2{x^2} + x + 1
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    2{x^2} + x \le 0\\
    \frac{{3x\left( {2{x^2} - x - 1} \right)}}{{ - 3x - 1}} \ge 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
     - \frac{1}{2} \le x \le 0\\
     - \frac{1}{3} < x \le \frac{{ - 1}}{2} \vee 0 \le x \le 1
    \end{array} \right.
    \end{array}\)

    Do \(x \in Z \Rightarrow x = 0,x = 1\)

    Vậy có 2 nghiệm nguyên.

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF