OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 47 trang 59 SBT Toán 9 Tập 2

Giải bài 47 tr 59 sách BT Toán lớp 9 Tập 2

Giải các phương trình sau bằng cách đưa về phương trình tích:

a) \(3{x^2} + 6{x^2} - 4x = 0\)

b) \({\left( {x + 1} \right)^3} - x + 1 = \left( {x - 1} \right)\left( {x - 2} \right)\)

c) \({\left( {{x^2} + x + 1} \right)^2} = {\left( {4x - 1} \right)^2}\)

d) \({\left( {{x^2} + 3x + 2} \right)^2} = 6\left( {{x^2} + 3x + 2} \right)\)

e) \({\left( {2{x^2} + 3} \right)^2} - 10{x^3} - 15x = 0\)

f) \({x^3} - 5{x^2} - x + 5 = 0\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

* Chuyển tất cả các hạng tử về vế trái, sau đó đặt nhân tử chung để đưa phương trình về dạng phương trình tích.

\(\begin{array}{l}
A\left( x \right).B\left( x \right).C\left( x \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
A\left( x \right) = 0\\
B\left( x \right) = 0\\
C\left( x \right) = 0
\end{array} \right.
\end{array}\)

* Phương trình \(a{x^2} + bx + c = 0\;(a \ne 0)\) và biệt thức \(\Delta'  = {b'^2} - ac\):

+) Nếu \(\Delta'  > 0\) thì phương trình có hai nghiệm phân biệt:

\({x_1}\)= \(\dfrac{-b' + \sqrt{\bigtriangleup' }}{a}\)  và \({x_2}\)= \(\dfrac{-b' - \sqrt{\bigtriangleup' }}{a}\)

+) Nếu \(\Delta'  = 0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b' }{a}\).

+) Nếu \(\Delta'  < 0\) thì phương trình vô nghiệm.

Lời giải chi tiết

Giải các phương trình sau bằng cách đưa về phương trình tích.

a) \(3{x^3} + 6{x^2} - 4x = 0 \Leftrightarrow x\left( {3{x^2} + 6x - 4} \right) = 0\)

x = 0 hoặc \(3{x^2} + 6x - 4 = 0\)

\(\eqalign{
& 3{x^2} + 6x - 4 = 0 \cr 
& \Delta ' = {3^2} - 3.\left( { - 4} \right) = 9 + 12 = 21 > 0 \cr 
& \sqrt {\Delta '} = \sqrt {21} \cr 
& {x_1} = {{ - 3 + \sqrt {21} } \over 3};{x_2} = {{ - 3 - \sqrt {21} } \over 3} \cr} \)

Vậy phương trình có 3 nghiệm: \({x_1} = 0;{x_2} = {{ - 3 + \sqrt {21} } \over 3};{x_3} = {{ - 3 - \sqrt {21} } \over 3}\)

b)

\(\eqalign{
& {\left( {x + 1} \right)^3} - x + 1 = \left( {x - 1} \right)\left( {x - 2} \right) \cr 
& \Leftrightarrow {x^3} + 3{x^2} + 3x + 1 - x + 1 = {x^2} - 2x - x + 2 \cr 
& \Leftrightarrow {x^3} + 2{x^2} + 5x = 0 \cr 
& \Leftrightarrow x\left( {{x^2} + 2x + 5} \right) = 0 \cr} \)

x = 0 hoặc \({x^2} + 2x + 5 = 0\)

\(\eqalign{
& {x^2} + 2x + 5 = 0 \cr 
& \Delta ' = 1 - 1.5 = 1 - 5 = - 4 < 0 \cr} \)

Phương trình vô nghiệm.

Vậy phương trình đã cho có một nghiệm x = 0

c)

\(\eqalign{
& {\left( {{x^2} + x + 1} \right)^2} = {\left( {4x - 1} \right)^2} \cr 
& \Leftrightarrow {\left( {{x^2} + x + 1} \right)^2} - {\left( {4x - 1} \right)^2} = 0 \cr 
& \Leftrightarrow \left[ {\left( {{x^2} + x + 1} \right) + \left( {4x - 1} \right)} \right]\left[ {\left( {{x^2} + x + 1} \right) - \left( {4x - 1} \right)} \right] = 0 \cr 
& \Leftrightarrow \left( {{x^2} + x + 1 + 4x - 1} \right)\left( {{x^2} + x + 1 - 4x + 1} \right) = 0 \cr 
& \Leftrightarrow \left( {{x^2} + 5x} \right)\left( {{x^2} - 3x + 2} \right) = 0 \cr 
& \Leftrightarrow x\left( {x + 5} \right)\left( {{x^2} - 3x + 2} \right) = 0 \cr 
& \Leftrightarrow \left[ {\matrix{
{x = 0} \cr 
{x + 5 = 0} \cr 
{{x^2} - 3x + 2 = 0} \cr} } \right. \cr} \)

x + 5 = 0 ⇒ x = -5

\({x^2} - 3x + 2 = 0\) có dạng: \(a + b + c = 0\), ta có: \(1 + \left( { - 3} \right) + 2 = 0\)

\({x_1} = 1;{x_2} = 2\)

Vậy phương trình đã cho có 4 nghiệm: \({x_1} = 0;{x_2} =  - 5;{x_3} = 1;{x_4} = 2\)

d)

\(\eqalign{
& {\left( {{x^2} + 3x + 2} \right)^2} = 6\left( {{x^2} + 3x + 2} \right) \cr 
& \Leftrightarrow {\left( {{x^2} + 3x + 2} \right)^2} - 6\left( {{x^2} + 3x + 2} \right) = 0 \cr 
& \Leftrightarrow \left( {{x^2} + 3x + 2} \right)\left[ {\left( {{x^2} + 3x + 2} \right) - 6} \right] = 0 \cr 
& \Leftrightarrow \left( {{x^2} + 3x + 2} \right)\left( {{x^2} + 3x - 4} \right) = 0 \cr 
& \Leftrightarrow \left[ {\matrix{
{{x^2} + 3x + 2 = 0} \cr 
{{x^2} + 3x - 4 = 0} \cr} } \right. \cr} \)

\({x^2} + 3x + 2 = 0\) có dạng: \(a - b + c = 0\), ta có:

\(\eqalign{
& 1 - 3 + 2 = 0 \cr 
& {x_1} = - 1;{x_2} = - 2 \cr} \)

\({x^2} + 3x - 4 = 0\) có dạng: $a + b + c = 0\)

\(\eqalign{
& 1 + 3 + \left( { - 4} \right) = 0 \cr 
& {x_3} = 1;{x_4} = - 4 \cr} \)

Vậy phương trình đã cho có 4 nghiệm: \({x_1} =  - 1;{x_2} =  - 2;{x_3} = 1;{x_4} =  - 4\)

e)

\(\eqalign{
& {\left( {2{x^2} + 3} \right)^2} - 10{x^3} - 15x = 0 \cr 
& \Leftrightarrow {\left( {2{x^2} + 3} \right)^2} - 5x\left( {2{x^2} + 3} \right) = 0 \cr 
& \Leftrightarrow \left( {2{x^2} + 3} \right)\left( {2{x^2} + 3 - 5x} \right) = 0 \cr} \)

Ta có:

\(\eqalign{
& 2{x^2} \ge 0 \Rightarrow 2{x^2} + 3 > 0 \cr 
& \Rightarrow 2{x^2} - 5x + 3 = 0 \cr} \)

Phương trình có dạng: \(a + b + c = 0\)

Ta có:

\(\eqalign{
& 2 + \left( { - 5} \right) + 3 = 0 \cr 
& {x_1} = 1;{x_2} = {3 \over 2} \cr} \)

Vậy phương trình đã cho có  2 nghiệm: \({x_1} = 1;{x_2} = {3 \over 2}\)

f)

\(\eqalign{
& {x^3} - 5{x^2} - x + 5 = 0 \cr 
& \Leftrightarrow {x^2}\left( {x - 5} \right) - \left( {x - 5} \right) = 0 \cr 
& \Leftrightarrow \left( {x - 5} \right)\left( {{x^2} - 1} \right) = 0 \cr 
& \Leftrightarrow \left( {x - 5} \right)\left( {x - 1} \right)\left( {x + 1} \right) = 0 \cr 
& \left[ {\matrix{
{x - 5 = 0} \cr 
{x + 1 = 0} \cr 
{x - 1 = 0} \cr} \Leftrightarrow \left[ {\matrix{
{x = 5} \cr 
{x = - 1} \cr 
{x = 1} \cr} } \right.} \right. \cr} \)

Vậy phương trình đã cho có  3 nghiệm: \({x_1} = 5;{x_2} =  - 1;{x_3} = 1\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 47 trang 59 SBT Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF