OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 50 trang 60 SBT Toán 9 Tập 2

Giải bài 50 tr 60 sách BT Toán lớp 9 Tập 2

Giải các phương trình sau bằng cách đặt ẩn phụ:

a) \({\left( {4x - 5} \right)^2} - 6\left( {4x - 5} \right) + 8 = 0\)

b) \({\left( {{x^2} + 3x - 1} \right)^2} + 2\left( {{x^2} + 3x - 1} \right) - 8 = 0\)

c) \({\left( {2{x^2} + x - 2} \right)^2} + 10{x^2} + 5x - 16 = 0\)

d) \(\left( {{x^2} - 3x + 4} \right)\left( {{x^2} - 3x + 2} \right) = 3\)

e) \({{2{x^2}} \over {{{\left( {x + 1} \right)}^2}}} - {{5x} \over {x + 1}} + 3 = 0\)

f) \(x - \sqrt {x - 1}  - 3 = 0\)

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết

Hướng dẫn giải

- Bước 1: Đặt ẩn phụ và điều kiện của ẩn (nếu có)

- Bước 2: Giải phương trình tìm ẩn phụ, kiểm tra điều kiện của ẩn.

- Bước 3: Thay lại giải phương trình tìm nghiệm.

Lời giải chi tiết

a) \({\left( {4x - 5} \right)^2} - 6\left( {4x - 5} \right) + 8 = 0\) đặt \(4x - 5 = t,\) ta có phương trình:

\(\eqalign{
& {t^2} - 6t + 8 = 0 \cr 
& \Delta ' = {\left( { - 3} \right)^2} - 1.8 = 9 - 8 = 1 > 0 \cr 
& \sqrt {\Delta '} = \sqrt 1 = 1 \cr 
& {t_1} = {{3 + 1} \over 1} = 4 \cr 
& {t_2} = {{3 - 1} \over 1} = 2 \cr} \)

Suy ra:

\(\left[ {\matrix{
{4x - 5 = 4} \cr 
{4x - 5 = 2} \cr
} \Leftrightarrow \left[ {\matrix{
{4x = 9} \cr 
{4x = 7} \cr} \Leftrightarrow \left[ {\matrix{
{x = {9 \over 4}} \cr 
{x = {7 \over 4}} \cr} } \right.} \right.} \right.\)

Phương trình có 2 nghiệm: \({x_1} = {9 \over 4};{x_2} = {7 \over 4}\)

b) \({\left( {{x^2} + 3x - 1} \right)^2} + 2\left( {{x^2} + 3x - 1} \right) - 8 = 0\) đặt \({x^2} + 3x - 1 = t\)

Ta có phương trình: \({t^2} + 2t - 8 = 0\)

\(\eqalign{
& \Delta ' = {1^2} - 1.\left( { - 8} \right) = 1 + 8 = 9 > 0 \cr 
& \sqrt {\Delta '} = \sqrt 9 = 3 \cr 
& {t_1} = {{ - 1 + 3} \over 1} = 2 \cr 
& {t_2} = {{ - 1 - 3} \over 1} = - 4 \cr} \)

Với t1 = 2 ta có: \({x^2} + 3x - 1 = 2 \Leftrightarrow {x^2} + 3x - 3 = 0\)

\(\eqalign{
& \Delta = 9 - 4.1.\left( { - 3} \right) = 9 + 12 = 21 > 0 \cr 
& \sqrt \Delta = \sqrt {21} \cr 
& {x_1} = {{ - 3 + \sqrt {21} } \over 1} = - 3 + \sqrt {21} \cr 
& {x_2} = {{ - 3 - \sqrt {21} } \over 1} = - 3 - \sqrt {21} \cr} \)

Với t2 = -4 ta có: \({x^2} + 3x - 1 =  - 4 \Leftrightarrow {x^2} + 3x + 3 = 0\)

\(\Delta  = {3^2} - 4.1.3 = 9 - 12 =  - 3 < 0\)

Phương trình vô nghiệm

Vậy phương trình có hai nghiệm: \({x_1} =  - 3 + \sqrt {21} ;{x_2} =  - 3 - \sqrt {21} \)

c)

\(\eqalign{
& {\left( {2{x^2} + x - 2} \right)^2} + 10{x^2} + 5x - 16 = 0 \cr 
& \Leftrightarrow {\left( {2{x^2} + x - 2} \right)^2} + 5\left( {2{x^2} + x - 2} \right) - 6 = 0 \cr} \)

Đặt \(2{x^2} + x - 2 = t\)

Ta có phương trình: \({t^2} + 5t - 6 = 0\) có dạng:

\(\eqalign{
& a + b + c = 0;1 + 5 + \left( { - 6} \right) = 0 \cr 
& {t_1} = 1;{t_2} = - 6 \cr} \)

Với t1 = 1 ta có: \(2{x^2} + x - 2 = 1 \Leftrightarrow 2{x^2} + x - 3 = 0\) có dạng: \(a + b + c = 0\)

\(2 + 1 + \left( { - 3} \right) = 0 \Rightarrow {x_1} = 1;{x_2} =  - {3 \over 2}\)

Với t2 = -6 ta có: \(2{x^2} + x - 2 =  - 6 \Leftrightarrow 2{x^2} + x + 4 = 0\)

\(\Delta  = {1^2} - 4.2.4 = 1 - 32 =  - 31 < 0\)

Phương trình vô nghiệm

Vậy phương trình có 2 nghiệm: \({x_1} = 1;{x_2} =  - {3 \over 2}\)

d)

\(\eqalign{
& \left( {{x^2} - 3x + 4} \right)\left( {{x^2} - 3x + 2} \right) = 3 \cr 
& \Leftrightarrow \left[ {\left( {{x^2} - 3x + 2} \right) + 2} \right]\left( {{x^2} - 3x + 2} \right) = 3 \cr 
& \Leftrightarrow {\left( {{x^2} - 3x + 2} \right)^2} + 2\left( {{x^2} - 3x + 2} \right) - 3 = 0 \cr} \)

Đặt \({x^2} - 3x + 2 = t\)

Ta có phương trình: \({t^2} + 2t - 3 = 0\) có dạng:

\(\eqalign{
& a + b + c = 0;1 + 2 + \left( { - 3} \right) = 0 \cr 
& {t_1} = 1;{t_2} = {{ - 3} \over 1} = - 3 \cr} \)

Với t1 = 1 ta có: \({x^2} - 3x + 2 = 1 \Leftrightarrow {x^2} - 3x + 1 = 0\)

\(\eqalign{
& \Delta = {\left( { - 3} \right)^2} - 4.1.1 = 9 - 4 = 5 > 0 \cr 
& \sqrt \Delta = \sqrt 5 \cr 
& {x_1} = {{3 + \sqrt 5 } \over {2.1}} = {{3 + \sqrt 5 } \over 2} \cr 
& {x_2} = {{3 - \sqrt 5 } \over {2.1}} = {{3 - \sqrt 5 } \over 2} \cr} \)

Với t2 = -3 ta có: \({x^2} - 3x + 2 =  - 3 \Leftrightarrow {x^2} - 3x + 5 = 0\)

\(\Delta  = {\left( { - 3} \right)^2} - 4.1.5 = 9 - 20 =  - 11 < 0\)

Phương trình vô nghiệm

Vậy phương trình có 2 nghiệm: \({x_1} = {{3 + \sqrt 5 } \over 2};{x_2} = {{3 - \sqrt 5 } \over 2}\)

e)

\(\eqalign{
& {{2{x^2}} \over {{{\left( {x + 1} \right)}^2}}} - {{5x} \over {x + 1}} + 3 = 0 \cr 
& \Leftrightarrow 2{\left( {{x \over {x + 1}}} \right)^2} - 5\left( {{x \over {x + 1}}} \right) + 3 = 0 \cr} \)

Đặt \({x \over {x + 1}} = t,\) ta có phương trình: \(2{t^2} - 5t + 3 = 0\)

\(2{t^2} - 5t + 3 = 0\) có dạng: \(a + b + c = 0;2 + \left( { - 5} \right) + 3 = 0\)

\({t_1} = 1;{t_2} = {3 \over 2}\)

Với \({t_1} = 1\) ta có: \({x \over {x + 1}} = 1 \Leftrightarrow x = x + 1 \Rightarrow 0x = 1\) vô nghiệm

Với t2 = \({3 \over 2}\) ta có: \({x \over {x + 1}} = {3 \over 2} \Leftrightarrow 2x = 3x + 3 \Rightarrow x =  - 3\)

x = -3 thỏa mãn điều kiện. Vậy phương trình có 1 nghiệm: x = -3

f) \(x - \sqrt {x - 1}  - 3 = 0\) điều kiện: x ≥ 1

\( \Leftrightarrow \left( {x - 1} \right) - \sqrt {x - 1}  - 2 = 0\) đặt \(\sqrt {x - 1}  = t \Rightarrow t \ge 0\)

Ta có phương trình: \({t^2} - t - 2 = 0\) có dạng: \(a - b + c = 0\)

\(\eqalign{
& 1 - \left( { - 1} \right) + \left( { - 2} \right) = 1 + 1 - 2 = 0 \cr 
& {t_1} = - 1;{t_2} = - {{ - 2} \over 1} = 2 \cr} \)

\({t_1} =  - 1 < 0\) loại

Với \({t_2} = 2\) ta có: \(\sqrt {x - 1}  = 2 \Rightarrow x - 1 = 4 \Rightarrow x = 5\)

x = 5 thỏa mãn điều kiện. Vậy phương trình có 1 nghiệm: x = 5

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 50 trang 60 SBT Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Kim Ngan

    Cho hình thang ABCD vuông tại A và D. Cho biết AB = 15cm, AD = 20cm, các đg chéo AC và BD vuông góc vs nhau ở O. Tính:

    a, Độ dài các đoạn thẳng OB và OD;

    b, Độ dài đoạn thẳng AC;

    c, Diện tích hình thang ABCD

    giúp e vs mấy bác :((

    Theo dõi (0) 1 Trả lời
  • hà trang

    Giả sử x1, x2 lla nghiệm của PT : \(3x^2-cx+2c-1=0\).Tính theo c giá trị :\(\dfrac{1}{x_1^3}+\dfrac{1}{x_2^3}\)

    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    truc lam

    Cho hai số thực x,y thỏa mãn

    (x+\(\sqrt{x^2+2011}\))(y+\(\sqrt{y^2+2011}\))=2011

    Tính x+y

    Theo dõi (0) 1 Trả lời
  • bach dang

    Cho \(y=3x^2+6x+5\) với mọi x thuộc R

    a)Tìm GTNN của hàm số

    b)C/m hàm số đồng biến với mọi x > -1 và nghịch biến với mọi x<-1

    Theo dõi (0) 1 Trả lời
  • ADMICRO
    Phạm Khánh Ngọc

    Tìm (x;y) thuộc N* Thỏa mãn: \(4x^2=3+y^2\)

    Theo dõi (0) 1 Trả lời
  • Mai Hoa

    Giải phương trình :

    \(\sqrt{2x-1}+\sqrt{1-2x^2}=2\sqrt{x-x^2}\)

    Theo dõi (0) 1 Trả lời
  • Anh Trần

    Khi nào cănx > x

    bởi Anh Trần 03/01/2019

    Khi nào \(\sqrt{x}\) > \(x\)

    Theo dõi (0) 1 Trả lời
  • Mai Thuy

    Bài 1: Cho 2 số dương a ,b thoả mãn a+b\(\leq \)2\(\sqrt{2}\). Tìm giá trị nhỏ nhất của biểu thứ P=\(\dfrac{1}{a}+\dfrac{1}{b}\)

    Theo dõi (0) 1 Trả lời
  • Bo Bo

    Cho biểu thức \(A=\dfrac{2mx-5}{x^2+n^2}\). Tìm giá trị của m và n để biểu thức A có giá trị nhỏ nhất là -9 và giá trị lớn nhất là 4.

    Theo dõi (0) 1 Trả lời
  • Nguyễn Thị An

    1) cho x+2y=4 Tìm a, Max của M với M= xy

    b, Min của N với N= x2 +y2

    2, Cho a, b \(\ge\)0 . CMR a, \(\dfrac{a^2+b^2}{2}\)\(\ge\)\(\left(\dfrac{a+b}{2}\right)^{^{ }2}\)

    b. \(\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{2}\right)^3\)

    c., a3 + b3 \(\ge\) ab(a+b)

    mọi người ơi mn giúp mk với mk đg cần gấp ạ

    Theo dõi (0) 1 Trả lời
  • Dell dell

    Cho pt : x2-2mx+m-2=0 (1) (x là ẩn số)

    a/ CM pt (1) luôn có 2 nghiệm phân biệt với mọi giá trị m

    b/ định m để 2 nghiệm x1,x2 của pt (1) thỏa mãn:

    (1+x1)(2-x2)+(1+x2)(2-x1)=x12+x22+2

    Theo dõi (0) 1 Trả lời
  • Ban Mai

    Bài 1: Tìm giá trị nhỏ nhất của hàm số \(y=\dfrac{2}{1-x}+\dfrac{1}{x}.\) với 0<x<1

    Theo dõi (0) 1 Trả lời
  • Nguyễn Thị An

    Bài 1: Cho biểu thức: Q=\(\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\)2 \(\left(\dfrac{\sqrt{x}+1}{\sqrt{x-1}}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

    a)Tìm tất cả gtri của x để Q có nghĩa . Rút gọn Q

    b) Tìm tất cả gtri của x để Q=3\(\sqrt{x}-3\)

    Theo dõi (0) 1 Trả lời
  • Đan Nguyên

    Bài 1: Tìm các số nguyên x,y thỏa mãn pt: (2x+1)y=x+1

    Theo dõi (0) 2 Trả lời
  • Chai Chai

    Giải hệ phương trình

    \(\left\{{}\begin{matrix}2x-y-7=0\\y^2-x^2+2x+2y+4=0\end{matrix}\right.\)

    Theo dõi (0) 1 Trả lời
NONE
OFF