OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Vận dụng 4 trang 71 SGK Toán 8 Chân trời sáng tạo Tập 1 - KNTT

Vận dụng 4 trang 71 SGK Toán 8 Chân trời sáng tạo Tập 1

Mặt cắt của một li giấy đựng bỏng ngô có dạng hình thang cân MNPQ (Hình 13) với hai đáy MN = 6 cm, PQ = 10 cm và độ dài hai đường chéo MP = NQ = 82 cm. Tính độ dài đường cao và cạnh bên của hình thang?

 

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Vận dụng 4

Vận dụng 4 trang 71 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

- MNPQ là hình thang cân nên MN // QP; MQ = NP; MQP^=NPQ^ (tính chất hình thang cân).

- Ta có: MN // QP (chứng minh trên) và NK ⊥ QP (giả thiết).

Suy ra NK ⊥ MN hay MNK^=90°.

Xét DMHK và DKNM có:

MHK^=KNM^=90°;

MK là cạnh huyền chung;

MKH^=KMN^ (hai góc so le trong của QP // MN).

Do đó DMHK = DKNM (cạnh huyền – góc nhọn)

Suy ra HK = NM = 6 cm (hai cạnh tương ứng).

- Xét DMHQ và DNKP có:

MHQ^=NKP^=90°;

MQ = NP (chứng minh trên);

MQH^=NPK^ (chứng minh trên).

Do đó DMHQ = DNKP (cạnh huyền – góc nhọn).

Suy ra QH = PK (hai cạnh tương ứng).

Mà QH + HK + PK = QP

Hay 2QH = QP – HK

Khi đó QH = PK = QPHK2=1062=2cm

Nên HP = HK + KP = 6 + 2 = 8 (cm).

- Áp dụng định lí Pythagore vào DMHP vuông tại H, ta có:

MP2 = MH2 + HP2

Suy ra MH2 = MP2 – HP2 = 82282=12864=64=82

Do đó MH = 8 cm.

Áp dụng định lí Pythagore vào DMHQ vuông tại H, ta có:

MQ2 = MH2 + HQ2 = 82 + 22 = 64 + 4 = 68

Suy ra MQ=217 (cm).

Vậy hình thang cân MNPQ có độ dài đường cao là MH = NK = 8 cm; độ dài cạnh bên là MQ = NP = 217 cm.

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Vận dụng 4 trang 71 SGK Toán 8 Chân trời sáng tạo Tập 1 - KNTT HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF