Phần hướng dẫn giải bài tập Toán 8 Cánh Diều Chương 5 Bài 4 Hình bình hành sẽ giúp các em nắm được phương pháp và rèn luyện kĩ năng, giải bài tập từ SGK Toán 8 Tập 1 Cánh Diều.
-
Khởi động trang 105 SGK Toán 8 Tập 1 Cánh diều - CD
Trong thiết kế tay vịn cầu thang (Hình 34), người ta thường để các cặp thanh sườn song song với nhau, các cặp thanh trụ song song với nhau, tạo nên các hình bình hành.
Hình bình hành có những tính chất gì? Có những dấu hiệu nào để nhận biết một tứ giác là hình bình hành?
-
Hoạt động 1 trang 105 SGK Toán 8 Tập 1 Cánh diều - CD
Cho biết các cặp cạnh đối AB và CD, AD và BC của tứ giác ABCD ở Hình 35 có song song với nhau hay không?
-
Hoạt động 2 trang 106 SGK Toán 8 Tập 1 Cánh diều - CD
Cho hình bình hành ABCD (Hình 37).
a) Hai tam giác ABD và CDB có bằng nhau hay không? Từ đó, hãy so sánh các cặp đoạn thẳng: AB và CD; DA và BC.
b) So sánh các cặp góc: \(\widehat {DAB}\) và \(\widehat {BCD}\); \(\widehat {ABC}\) và \(\widehat {CDA}\).
c) Hai tam giác OAB và OCD có bằng nhau hay không? Từ đó, hãy so sánh các cặp đoạn thẳng: OA và OC; OB và OD.
-
Luyện tập 1 trang 106 SGK Toán 8 Tập 1 Cánh diều - CD
Cho hình bình hành ABCD có \(\widehat A = {80^o};AB = 4cm;BC = 5cm\). Tính số đo mỗi góc và độ dài các cạnh còn lại của hình bình hành ABCD?
- VIDEOYOMEDIA
-
Hoạt động 3 trang 106 SGK Toán 8 Tập 1 Cánh diều - CD
a) Cho tứ giác ABCD có AB = CD, BC = DA (hình 39).
- Hai tam giác ABC và CDA có bằng nhau hay không? Từ đó, hãy so sánh các cặp góc: \(\widehat {BAC}\) và \(\widehat {DCA};\widehat {ACB}\) và \(\widehat {CAD}\).
- ABCD có phải là hình bình hành hay không?
b) Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường (Hình 40).
- Hai tam giác ABO và CDO có bằng nhau hay không? Từ đó, hãy so sánh các cặp góc: \(\widehat {BAC}\) và \(\widehat {DCA};\widehat {ACB}\) và \(\widehat {CA{\rm{D}}}\).
- ABCD có phải là hình bình hành hay không?
-
Luyện tập 2 trang 107 SGK Toán 8 Tập 1 Cánh diều - CD
Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O thỏa mãn: OA = OC và \(\widehat {OA{\rm{D}}} = \widehat {OCB}\). Chứng minh tứ giác ABCD là hình bình hành?
-
Bài 1 trang 107 SGK Toán 8 Tập 1 Cánh diều - CD
Cho tứ giác ABCD có \(\widehat {DAB} = \widehat {BC{\rm{D}}};\widehat {ABC} = \widehat {C{\rm{D}}A}\). Kẻ tia Ax là tia đối của tia AB. Chứng minh:
a) \(\widehat {ABC} + \widehat {DAB} = {180^o}\)
b) \(\widehat {xA{\rm{D}}} = \widehat {ABC};AC//BC\)
c) Tứ giác ABCD là hình bình hành.
-
Bài 2 trang 108 SGK Toán 8 Tập 1 Cánh diều - CD
Cho tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G. Gọi P và Q lần lượt là trung điểm của GB và GC. Chứng minh tứ giác PQMN là hình bình hành?
-
Bài 3 trang 108 SGK Toán 8 Tập 1 Cánh diều - CD
Cho hai hình bình hành ABCD và ABMN (Hình 42). Chứng minh:
a) CD = MN
b) \(\widehat {BC{\rm{D}}} + \widehat {BMN} = \widehat {DAN}\)
-
Bài 4 trang 108 SGK Toán 8 Tập 1 Cánh diều - CD
Để đo khoảng cách giữa hai vị trí A, B ở hai phía của một tòa nhà mà không thể đo trực tiếp được, người ta làm như sau: Chọn các vị trí O, C, D sao cho O không thuộc đường thẳng AB; khoảng cách CD là đo được; O là trung điểm của cả AC và BD (hình 43). Người ta đo được CD = 100 m và khẳng định AB = 100 m. Em hãy giải thích vì sao AB = 100m?
-
Bài 5 trang 108 SGK Toán 8 Tập 1 Cánh diều - CD
Bạn Hoa vẽ tam giác ABC lên tờ giấy sau đó cắt một phần tam giác ở phái góc (Hình 44). Bạn Hoa đó bạn Hùng: Không vẽ lại tam giác ABC, làm thế nào tính được độ dài đoạn thẳng AC, BC và số đo góc ACB?
Bạn Hùng làm như sau:
- Qua điểm A kẻ đường thẳng d song song với BC; qua điểm B kẻ đường thẳng d’ song song với AC.
- Gọi E là giao điểm của d và d’.
- Đo độ dài các đoạn thẳng AE, BE và đo góc AEB. Từ đó, tính được độ dài các đoạn thẳng AC, BC và số đo góc ACB (hình 45).
Em hãy giải thích cách làm của bạn Hùng.