OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 31 trang 32 SBT Toán 8 Tập 1

Giải bài 31 tr 32 sách BT Toán lớp 8 Tập 1

Phân tích các tử thức và các mẫu thức (nếu cần thì dùng phương pháp thêm và bớt cùng một số hạng hoặc tách một số hạng thành hai số hạng) rồi rút gọn biểu thức :

a. \({{x - 2} \over {x + 1}}.{{{x^2} - 2x - 3} \over {{x^2} - 5x + 6}}\)

b. \({{x + 1} \over {{x^2} - 2x - 8}}.{{4 - x} \over {{x^2} + x}}\)

c. \({{x + 2} \over {4x + 24}}.{{{x^2} - 36} \over {{x^2} + x - 2}}\)

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết

Hướng dẫn giải

Muốn nhân hai phân thức, ta nhân các tử thức với nhau, nhân các mẫu thức với nhau.

Với \(B,D \ne 0\) ta có: \(\dfrac{A}{B}.\dfrac{C}{D} = \dfrac{{A.C}}{{B.D}}\) 

Lời giải chi tiết

a. \({{x - 2} \over {x + 1}}.{{{x^2} - 2x - 3} \over {{x^2} - 5x + 6}}\)\( = {{\left( {x - 2} \right)\left( {{x^2} - 2x - 3} \right)} \over {\left( {x + 1} \right)\left( {{x^2} - 5x + 6} \right)}} = {{\left( {x - 2} \right)\left( {{x^2} - 3x + x - 3} \right)} \over {\left( {x + 1} \right)\left( {{x^2} - 2x - 3x + 6} \right)}}\)

\( = {{\left( {x - 2} \right)\left[ {x\left( {x - 3} \right) + \left( {x - 3} \right)} \right]} \over {\left( {x + 1} \right)\left[ {x\left( {x - 2} \right) - 3\left( {x - 2} \right)} \right]}} = {{\left( {x - 2} \right)\left( {x - 3} \right)\left( {x + 1} \right)} \over {\left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}} = 1\)

b. \({{x + 1} \over {{x^2} - 2x - 8}}.{{4 - x} \over {{x^2} + x}}\)\( = {{\left( {x + 1} \right)\left( {4 - x} \right)} \over {\left( {{x^2} - 2x - 8} \right)x\left( {x + 1} \right)}} = {{4 - x} \over {\left( {{x^2} - 4x + 2x - 8} \right)x}}\)

\( = {{4 - x} \over {\left[ {x\left( {x - 4} \right) + 2\left( {x - 4} \right)} \right]x}} = {{4 - x} \over {x\left( {x - 4} \right)\left( {x + 2} \right)}} =  - {{x - 4} \over {x\left( {x - 4} \right)\left( {x + 2} \right)}} =  - {1 \over {x\left( {x + 2} \right)}}\)

c. \({{x + 2} \over {4x + 24}}.{{{x^2} - 36} \over {{x^2} + x - 2}}\)\({{\left( {x + 2} \right)\left( {x + 6} \right)\left( {x - 6} \right)} \over {4\left( {x + 6} \right)\left( {{x^2} + x - 2} \right)}} = {{\left( {x + 2} \right)\left( {x - 6} \right)} \over {4\left( {{x^2} + 2x - x - 2} \right)}}\)

\( = {{\left( {x + 2} \right)\left( {x - 6} \right)} \over {4\left[ {x\left( {x + 2} \right) - \left( {x - 2} \right)} \right]}} = {{\left( {x + 2} \right)\left( {x - 6} \right)} \over {4\left( {x + 2} \right)\left( {x - 1} \right)}} = {{x - 6} \over {4\left( {x - 1} \right)}}\)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 31 trang 32 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF