Giải bài 7.1 tr 33 sách BT Toán lớp 8 Tập 1
Thực hiện các phép tính sau bằng hai cách : dùng tính chất phân phối của phép nhân đối với phép cộng và không dùng tính chất này :
a. \({{{x^3} - 1} \over {x + 2}}.\left( {{1 \over {x - 1}} - {{x + 1} \over {{x^2} + x + 1}}} \right)\)
b. \({{{x^3} + 2{x^2} - x - 2} \over {2x + 10}}\left( {{1 \over {x - 1}} - {2 \over {x + 1}} + {1 \over {x + 2}}} \right)\)
Hướng dẫn giải chi tiết
Hướng dẫn giải
Cách 1: Áp dụng tính chất phân phối của phép nhân đối với phép cộng :
\(\dfrac{A}{B}\left( {\dfrac{C}{D} + \dfrac{E}{F}} \right) = \dfrac{A}{B}.\dfrac{C}{D} + \dfrac{A}{B}.\dfrac{E}{F}\)
Cách 2: Biểu thức có dấu ngoặc thì tính trong ngoặc trước, ngoài ngoặc sau.
Lời giải chi tiết
a.
Cách 1 :
\({{{x^3} - 1} \over {x + 2}}.\left( {{1 \over {x - 1}} - {{x + 1} \over {{x^2} + x + 1}}} \right)\)
\(\eqalign{ & = {{{x^3} - 1} \over {x + 2}}.{1 \over {x - 1}} - {{{x^3} - 1} \over {x + 2}}.{{x + 1} \over {{x^2} + x + 1}} \cr & = {{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)} \over {\left( {x + 2} \right)\left( {x - 1} \right)}} - {{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\left( {x + 1} \right)} \over {\left( {x + 2} \right)\left( {{x^2} + x + 1} \right)}} \cr & = {{{x^2} + x + 1} \over {x + 2}} - {{{x^2} - 1} \over {x + 2}} = {{{x^2} + x + 1 - {x^2} + 1} \over {x + 2}} = {{x + 2} \over {x + 2}} = 1 \cr} \)
Cách 2 : \({{{x^3} - 1} \over {x + 2}}.\left( {{1 \over {x - 1}} - {{x + 1} \over {{x^2} + x + 1}}} \right)\)
\(\eqalign{ & = {{{x^3} - 1} \over {x + 2}}.\left[ {{{{x^2} + x + 1} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - {{\left( {x + 1} \right)\left( {x - 1} \right)} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}} \right] \cr & = {{{x^3} - 1} \over {x + 2}}.{{{x^2} + x + 1 - {x^2} + 1} \over {{x^3} - 1}} = {{{x^3} - 1} \over {x + 2}}.{{x + 2} \over {{x^3} - 1}} = 1 \cr} \)
b.
Cách 1 : \({{{x^3} + 2{x^2} - x - 2} \over {2x + 10}}\left( {{1 \over {x - 1}} - {2 \over {x + 1}} + {1 \over {x + 2}}} \right)\)
\(\eqalign{ & = {{{x^2}\left( {x + 2} \right) - \left( {x + 2} \right)} \over {2x + 10}}.\left( {{1 \over {x - 1}} - {2 \over {x + 1}} + {1 \over {x + 2}}} \right) \cr & = {{\left( {x + 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}}.{1 \over {x - 1}} - {{\left( {x + 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}}.{2 \over {x + 1}} + {{\left( {x + 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}}.{1 \over {x + 2}} \cr & = {{\left( {x + 2} \right)\left( {x + 1} \right)} \over {2\left( {x + 5} \right)}} - {{2\left( {x + 2} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}} + {{\left( {x + 1} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}} \cr & = {{{x^2} + 2x + x + 2 - 2{x^2} + 2x - 4x + 4 + {x^2} - 1} \over {2\left( {x + 5} \right)}} = {{x + 5} \over {2\left( {x + 5} \right)}} = {1 \over 2} \cr} \)
Cách 2 : \({{{x^3} + 2{x^2} - x - 2} \over {2x + 10}}\left( {{1 \over {x - 1}} - {2 \over {x + 1}} + {1 \over {x + 2}}} \right)\)
\(\eqalign{ & = {{\left( {x + 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}}.{{\left( {x - 1} \right)\left( {x + 2} \right) - 2\left( {x - 1} \right)\left( {x + 2} \right) + \left( {x + 1} \right)\left( {x - 1} \right)} \over {\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 2} \right)}} \cr & = {{\left( {x + 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}}.{{{x^2} + 2x + x + 2 - 2{x^2} - 4x + 2x + 4 + {x^2} - 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 2} \right)}} \cr & = {{\left( {x + 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}}.{{x + 5} \over {\left( {x + 1} \right)\left( {x - 1} \right)\left( {x + 2} \right)}} = {1 \over 2} \cr} \)
-- Mod Toán 8 HỌC247
Bài tập SGK khác
-
Bài 32 trang 33 sách bài tập toán 8 tập 1
bởi na na 15/10/2018
Bài 32 (Sách bài tập - trang 33)
Áp dụng tính chất phân phối của phép nhân đối với phép cộng để rút gọn biểu thức :
a) \(\dfrac{x^3}{x+1975}.\dfrac{2x+1954}{x+1}+\dfrac{x^3}{x+1975}.\dfrac{21-x}{x+1}\)
b) \(\dfrac{19x+8}{x-7}.\dfrac{5x-9}{x+1945}-\dfrac{19x+8}{x-7}.\dfrac{4x-2}{x+1945}\)
Theo dõi (0) 1 Trả lời -
Bài 31 trang 32 sách bài tập toán 8 tập 1
bởi bala bala 15/10/2018
Bài 31 (Sách bài tập - trang 32)
Phân tích các tử thức và các mẫu thức (nếu cần thì dùng phương pháp thêm và bớt cùng một số hạng hoặc tách một số hạng thành hai số hạng ) rồi rút gọn biểu thức :
a) \(\dfrac{x-2}{x+1}.\dfrac{x^2-2x-3}{x^2-5x+6}\)
b) \(\dfrac{x+1}{x^2-2x-8}.\dfrac{4-x}{x^2+x}\)
c) \(\dfrac{x+2}{4x+24}.\dfrac{x^2-36}{x^2+x-2}\)
Theo dõi (0) 1 Trả lời -
Bài 30 trang 32 sách bài tập toán 8 tập 1
bởi Bin Nguyễn 15/10/2018
Bài 30 (Sách bài tập - trang 32)
Rút gọn biểu thức (chú ý dùng quy tắc đổi dấu để thấy nhân tử chung)
a) \(\dfrac{x+3}{x^2-4}.\dfrac{8-12x+6x^2-x^3}{9x+27}\)
b) \(\dfrac{6x-3}{5x^2+x}.\dfrac{25x^2+10x+1}{1-8x^3}\)
c) \(\dfrac{3x^2-x}{x^2-1}.\dfrac{1-x^4}{\left(1-3x\right)^3}\)
Theo dõi (0) 1 Trả lời -
Chứng minh a/b^2+1+b/c^2+1+c/a^2+1 > = 3/2
bởi Nguyễn Phương Khanh 30/01/2019
cho a,b,c>0 thỏa mãn a+b+c=3. chứng minh rằng \(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge\dfrac{3}{2}\)
Theo dõi (0) 1 Trả lời -
ADMICRO
Chứng minh a^2+b^2+c^2 > =ab+ac+bc
bởi Phong Vu 30/01/2019
chứng minh rằng a2+b2+c2\(\ge\)ab+ac+bc với mọi số a,b,c
Theo dõi (0) 1 Trả lời -
Tính yz/x^2+xz/y^2+xy/z^2 biết xy+yz+xz=0
bởi Nguyễn Trung Thành 30/01/2019
tính giá trị của biểu thức B=\(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\), biết xy+yz+xz=0 và \(xyz\ne0\)
Theo dõi (0) 1 Trả lời -
Chứng minh a^3+b^3+c^3=3abc biết a+b+c=0
bởi na na 30/01/2019
cho a+b+c=0. chứng minh rằng a3+b3+c3=3abc
Theo dõi (0) 1 Trả lời