Bài tập 25 trang 162 SGK Toán 12 NC
Tính các tích phân sau :
\(\begin{array}{l}
a)\int \limits_0^{\frac{\pi }{4}} x\cos 2xdx\\
b)\int \limits_0^1 \frac{{\ln \left( {2 - x} \right)}}{{2 - x}}dx\\
c)\int \limits_1^{\frac{\pi }{2}} {x^2}\cos xdx.\\
d)\int \limits_0^{\frac{\pi }{4}} x\cos 2xdx\\
e)\int \limits_1^e {x^2}\ln xdx
\end{array}\)
Hướng dẫn giải chi tiết
a) Đặt \(\left\{ \begin{array}{l}
u = x\\
dv = \cos 2xdx
\end{array} \right. \)
\(\Rightarrow \left\{ \begin{array}{l}
du = dx\\
v = \frac{1}{2}\sin 2x
\end{array} \right.\)
Do đó:
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\int\limits_0^{\frac{\pi }{4}} x \cos 2xdx\\
= \left. {\frac{1}{2}x\sin 2x} \right|_0^{\frac{\pi }{4}} - \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {\sin 2x} dx
\end{array}\\
\begin{array}{l}
= \frac{\pi }{8} + \left. {\frac{1}{4}\cos 2x} \right|_0^{\frac{\pi }{4}}\\
= \frac{\pi }{8} + \frac{1}{4}\left( { - 1} \right) = \frac{\pi }{8} - \frac{1}{4}
\end{array}
\end{array}\)
b) Đặt \(u = \ln (2 - x) \Rightarrow du = \frac{{ - 1}}{{2 - x}}dx\)
\(\begin{array}{l}
\int\limits_0^1 {\frac{{\ln \left( {2 - x} \right)}}{{2 - x}}} dx = - \int\limits_{\ln 2}^0 u du\\
= \int\limits_0^{\ln 2} u du = \left. {\frac{{{u^2}}}{2}} \right|_0^{\ln 2} = \frac{1}{2}{\left( {\ln 2} \right)^2}
\end{array}\)
c) Đặt \(\left\{ \begin{array}{l}
u = {x^2}\\
dv = \cos xdx
\end{array} \right. \)
\(\Rightarrow \left\{ \begin{array}{l}
du = 2xdx\\
v = \sin x
\end{array} \right.\)
Do đó:
\(\begin{array}{l}
I = \int\limits_0^{\frac{\pi }{2}} {{x^2}} \cos 2xdx\\
= \left. {{x^2}{\rm{sinx}}} \right|_0^{\frac{\pi }{2}} - 2\int\limits_0^{\frac{\pi }{2}} x sinxdx\\
= \frac{{{\pi ^2}}}{4} - 2{I_1}
\end{array}\)
Với \({I_1} = \int \limits_0^{\frac{\pi }{2}} x\sin xdx\)
Đặt \(\left\{ {\begin{array}{*{20}{l}}
{u = x}\\
{dv = \sin xdx}
\end{array}} \right. \Rightarrow \left\{ \begin{array}{l}
du = dx\\
v = - \cos x
\end{array} \right.\)
Do đó:
\(\begin{array}{l}
{I_1} = \left. { - x\cos x} \right|_0^{\frac{\pi }{2}} + \int\limits_0^{\frac{\pi }{2}} {\cos } xdx\\
= \left. {\sin x} \right|_0^{\frac{\pi }{2}} = 1
\end{array}\)
Vậy \(I = \frac{{{\pi ^2}}}{4} - 2\)
d) Đặt
\(\begin{array}{l}
u = \sqrt {{x^3} + 1} \Rightarrow {u^2} = {x^3} + 1\\
\Rightarrow 2udu = 3{x^2}dx\\
\Rightarrow {x^2}dx = \frac{2}{3}udu
\end{array}\)
\(\begin{array}{l}
\int\limits_0^1 {{x^2}} \sqrt {{x^3} + 1} dx = \frac{2}{3}\int\limits_1^{\sqrt 2 } {{u^2}} du\\
= \left. {\frac{{2{u^3}}}{9}} \right|_1^{\sqrt 2 } = \frac{2}{9}\left( {2\sqrt 2 0 - 1} \right)
\end{array}\)
e) Đặt \(\left\{ \begin{array}{l}
u = \ln x\\
dv = {x^2}dx
\end{array} \right. \)
\(\Rightarrow \left\{ \begin{array}{l}
du = \frac{{dx}}{2}\\
v = \frac{{{x^3}}}{3}
\end{array} \right.\)
Do đó:
\(\begin{array}{l}
\int\limits_1^e {{x^2}} \ln xdx\\
= \left. {\frac{{{x^3}}}{3}\ln x} \right|_1^e - \frac{1}{3}\int\limits_0^e {{x^2}} dx\\
= \left. {\frac{{{e^3}}}{3} - \frac{1}{9}{x^3}} \right|_1^e = \frac{{2{e^3} + 1}}{9}
\end{array}\)
-- Mod Toán 12 HỌC247
-
Tính tích phân \(I=\int_{0}^{\frac{\pi }{4}}(x+2+tan^2x)sinxdx\)
Theo dõi (0) 3 Trả lời -
Tính tích phân: \(\small I = \int_{1}^{2}(2x^3+lnx)dx\)
Theo dõi (0) 2 Trả lời -
Tính tích phân \(I=\int_{0}^{1} (x-3)e^xdx.\)
bởi Nguyễn Minh Minh 08/02/2017
Tính tích phân \(I=\int_{0}^{1} (x-3)e^xdx.\)
Theo dõi (0) 3 Trả lời