Hoạt động 3 trang 114 SGK Toán 11 Kết nối tri thức tập 1
Cho hàm số \(f\left( x \right) = 1 + \frac{2}{{x - 1}}\) có đồ thị như Hình 5.4.
Giả sử (xn) là dãy số sao cho xn > 1, xn ⟶ +∞. Tính f(xn) và \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\).
Hướng dẫn giải chi tiết Hoạt động 3
Phương pháp giải
- Cho hàm số \(y = f(x)\) xác định trên khoảng \((a; +\infty)\).
Ta nói hàm số \(y = f(x)\) có giới hạn là số L khi \(x \to +\infty\) nếu với dãy số (\(x_n\)) bất kì, \(x_n>a\) và \(x_n \to +\infty\), ta có \(f(x_n) \to L\).
Lời giải chi tiết
Với (xn) là dãy số sao cho xn > 1, xn ⟶ +∞.
Ta có: \(f\left( {{x_n}} \right) = 1 + \frac{2}{{{x_n} - 1}}\).
Khi xn ⟶ +∞ thì \(\mathop {\lim }\limits_{n \to + \infty } \frac{2}{{{x_n} - 1}} = 0\).
Do đó \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right) = \mathop {\lim }\limits_{n \to + \infty } \left( {1 + \frac{2}{{{x_n} - 1}}} \right) = 1\).
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Hoạt động 2 trang 113 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Luyện tập 2 trang 113 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Luyện tập 3 trang 115 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Vận dụng trang 115 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Hoạt động 4 trang 115 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Hoạt động 5 trang 116 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Luyện tập 4 trang 116 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Luyện tập 5 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.7 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.8 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.9 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.10 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.11 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.12 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.13 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Bài tập 5.11 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.12 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.13 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.14 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.15 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.16 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.17 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.18 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.19 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.20 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.