Giải Bài 5.13 trang 118 SGK Toán 11 Kết nối tri thức tập 1
Cho hàm số \(f\left( x \right) = \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\).
Tính \(\mathop {{\rm{lim}}}\limits_{x \to {2^ + }}f\left( x \right)\) và \(\mathop {{\rm{lim}}}\limits_{x \to 2^-} \:f\left(x \right).\)
Hướng dẫn giải chi tiết Bài 5.13
Phương pháp giải
HS xem lại kiến thức về giới hạn bên trái và giới hạn bên phải.
Lời giải chi tiết
Ta có: \(f\left( x \right) = \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \frac{2}{{x - 1}} \cdot \frac{1}{{x - 2}}\)
+) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{2}{{x - 1}} = \frac{2}{{2 - 1}} = 2 > 0\) và \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}} = + \infty \) (do x – 2 > 0 khi x > 2).
Áp dụng quy tắc tìm giới hạn của tích, ta được \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = + \infty \).
+) \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{2}{{x - 1}} = \frac{2}{{2 - 1}} = 2 > 0\) và \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{1}{{x - 2}} = - \infty \) (do x – 2 < 0 khi x < 2).
Áp dụng quy tắc tìm giới hạn của tích, ta được \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = - \infty \).
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Giải Bài 5.11 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.12 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Bài tập 5.11 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.12 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.13 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.14 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.15 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.16 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.17 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.18 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.19 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.20 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.