Giải Bài 5.12 trang 118 SGK Toán 11 Kết nối tri thức tập 1
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{1 - 2x}}{{\sqrt {{x^2} + 1} }}\);
b) \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 2} - x} \right)\).
Hướng dẫn giải chi tiết Bài 5.12
Phương pháp giải
a, Chia cả tử và mẫu cho \({x^n}\), với n là bậc cao nhất.
b, Nhân với biểu thức liên hợp
\(\left( {\sqrt A - B} \right).\left( {\sqrt A + B} \right) = A - {B^2}\)
Lời giải chi tiết
a)
\(\begin{array}{l} \mathop {\lim }\limits_{x \to + \infty } \frac{{1 - 2x}}{{\sqrt {{x^2} + 1} }} \\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 - 2x}}{{\sqrt {{x^2}\left( {1 + \frac{1}{{{x^2}}}} \right)} }}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\left( {\frac{1}{x} - 2} \right)}}{{x\sqrt {1 + \frac{1}{{{x^2}}}} }} \\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{\frac{1}{x} - 2}}{{\sqrt {1 + \frac{1}{{{x^2}}}} }} \\ = \frac{{ - 2}}{{\sqrt 1 }} = - 2 \end{array}\)
b) Ta có:
\(\begin{array}{l} \sqrt {{x^2} + x + 2} - x \\ = \frac{{{{\left( {\sqrt {{x^2} + x + 2} } \right)}^2} - {x^2}}}{{\sqrt {{x^2} + x + 2} + x}}\\ = \frac{{x + 2}}{{\sqrt {{x^2} + x + 2} + x}} \end{array}\)
Do đó
\(\begin{array}{l} \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 2} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{x + 2}}{{\sqrt {{x^2} + x + 2} + x}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{x + 2}}{{\sqrt {{x^2}\left( {1 + \frac{1}{x} + \frac{2}{{{x^2}}}} \right)} + x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x + 2}}{{x\sqrt {1 + \frac{1}{x} + \frac{2}{{{x^2}}}} + x}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\left( {1 + \frac{2}{x}} \right)}}{{x\left( {\sqrt {1 + \frac{1}{x} + \frac{2}{{{x^2}}}} + 1} \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 + \frac{2}{x}}}{{\sqrt {1 + \frac{1}{x} + \frac{2}{{{x^2}}}} + 1}} = \frac{1}{2} \end{array}\)
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Giải Bài 5.10 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.11 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.13 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Bài tập 5.11 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.12 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.13 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.14 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.15 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.16 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.17 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.18 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.19 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.20 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.