Giải Bài 5.11 trang 118 SGK Toán 11 Kết nối tri thức tập 1
Cho hàm số \(g\left( x \right) = \frac{{{x^2} - 5x + 6}}{{\left| {x - 2} \right|}}\)
Tìm \(\mathop {{\rm{lim}}}\limits_{x \to {2^ + }}g\left( x \right)\) và \(\mathop {{\rm{lim}}}\limits_{x \to 2^-} \:g\left(x \right).\)
Hướng dẫn giải chi tiết Bài 5.11
Phương pháp giải
Áp dụng giới hạn trái, phải để tính.
\(|a| = \left\{ \begin{array}{l} a,a \ge 0,\\ - a,\,a < 0. \end{array} \right.\)
Lời giải chi tiết
Khi \(x \to {2^ - } \Rightarrow \left| {x - 2} \right| = 2 - x\)
Ta có:
\(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} - 5x + 6}}{{\left| {x - 2} \right|}} \)\(= \mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} - 5x + 6}}{{2 - x}} \)\(= \mathop {\lim }\limits_{x \to {2^ - }} \frac{{\left( {x - 2} \right)\left( {x - 3} \right)}}{{ - \left( {x - 2} \right)}}\)\( = \mathop {\lim }\limits_{x \to {2^ - }} \left[ { - \left( {x - 3} \right)} \right]\)\( = 3 - 2 = 1\)
Khi \(x \to {2^ + } \Rightarrow \left| {x - 2} \right| = x - 2\)
Ta có
\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 5x + 6}}{{\left| {x - 2} \right|}} \)\(= \mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 5x + 6}}{{x - 2}} \)\(= \mathop {\lim }\limits_{x \to {2^ + }} \frac{{\left( {x - 2} \right)\left( {x - 3} \right)}}{{x - 2}} \)\(= \mathop {\lim }\limits_{x \to {2^ - }} \left( {x - 3} \right) \)\(= 2 - 3 = - 1\)
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Giải Bài 5.9 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.10 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.12 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.13 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Bài tập 5.11 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.12 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.13 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.14 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.15 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.16 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.17 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.18 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.19 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.20 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.