Giải Bài 5.8 trang 118 SGK Toán 11 Kết nối tri thức tập 1
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to 0} \frac{{{{\left( {x + 2} \right)}^2} - 4}}{x}\);
b) \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 9} - 3}}{{{x^2}}}\).
Hướng dẫn giải chi tiết Bài 5.8
Phương pháp giải
a, Phân tích đa thức thành nhân tử.
b, Nhân cả tử và mẫu với biểu thức liên hợp của tử \((\sqrt A + B).(\sqrt A - B) = A - {B^2}\).
Lời giải chi tiết
a) \(\mathop {\lim }\limits_{x \to 0} \frac{{{{\left( {x + 2} \right)}^2} - 4}}{x} \)\(= \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} + 4x}}{x} \)\(= \mathop {\lim }\limits_{x \to 0} \left( {x + 4} \right) = 4\)
b) \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 9} - 3}}{{{x^2}}} \)\(= \mathop {\lim }\limits_{x \to 0} \frac{1}{{\sqrt {{x^2} + 9} + 3}} \)\(= \frac{1}{6}\)
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Luyện tập 5 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.7 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.9 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.10 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.11 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.12 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 5.13 trang 118 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Bài tập 5.11 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.12 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.13 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.14 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.15 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.16 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.17 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.18 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.19 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 5.20 trang 83 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.